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Background
DDPMs & Score-based models: two perspectives.

Denoising diffusion probabilistic models (DDPMs), NIPS 20’:
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Background
DDPMs & Score-based models: two perspectives.

Generative Modeling by Estimating Gradients of the Data Distribution (NCSN), ICLR 19’:

Score matching:

Why?

Considering a parameterized distribution:

The MLE target is:
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Background
DDPMs & Score-based models: two perspectives.

Generative Modeling by Estimating Gradients of the Data Distribution, ICLR 19’:

However, such a target is difficult to learn due to �(�). We notice that:

Thus, the training target becomes:

The sampling process can be:

How to compute                               ? 
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Background
DDPMs & Score-based models: two perspectives.

Generative Modeling by Estimating Gradients of the Data Distribution, ICLR 19’:

How to compute                               ? 

We perturb the sample by:

And we approximate the perturbed distribution:

Through:
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Background
DDPMs & Score-based models: two perspectives.

Generative Modeling by Estimating Gradients of the Data Distribution, ICLR 19’:

After the training  the               on a set of different �, we sample by:

• Sample �0 from                                                         with a large σ0

• Repeat:

• Start from ��−1 within ���−1, repeat (10), until get �� from ���

• Until �� is 0, where � is equal to �.

What’s the loss? Recall that                                                         , we have:

Thus:
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Background
Two perspectives are both vital.

DDPM is more simple and intuitive.

NCSN is more fundamental and easy to extend:

Classifier guidance:

Classifier-free guidance:

(and my previous diffusion-based compression paper) 

are both derived from NCSN.
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Method
Employ diffusion models in image super-resolution.

Challenges of generating SR images directly via diffusion models:

• Training the models

• Sampling from the models

Approach: only employ diffusion models as a guidance to create details.

12



Method

Two stages.
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Method

Stage1: Structural reconstruction module.
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Method

Stage2: Diffusion-based guidance module
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Experiments
The framework can be employed in different low-level vision tasks.

Image inpainting:
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Experiments
The framework can be employed in different low-level vision tasks.

Image super-resolution:
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Experiments
The framework can be employed in different low-level vision tasks.

Image de-motion-blur:
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Experiments
The core ablation: how does the diffusion module affect the performances?

Diffusion-based methods can be less rigorous but well-performed.

The idea of the paper can be inspiring.
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