DEADiff: An Efficient Stylization Diffusion Model with Disentangled Representations

Tianhao Qi^{1*}, Shancheng Fang¹, Yanze Wu²⁺, Hongtao Xie^{1⊠}, Jiawei Liu², Lang Chen², Qian He², Yongdong Zhang¹

¹University of Science and Technology of China, ²ByteDance, *Works done during the internship at ByteDance, [†]Project lead, ^{III}Corresponding author,

PRESENTER: GUO TANG

2024/5/19

Outline

1 Background

BLIP-Diffusion: Pre-trained Subject Representation for Controllable Text-to-Image Generation and Editing

Dongxu Li[†], Junnan Li[†], Steven C.H. Hoi[†] Salesforce AI Research

[†]Corresponding authors: {li.d,junnan.li,shoi}@salesforce.com https://github.com/salesforce/LAVIS/tree/main/projects/blip-diffusion

Two stage pre-training

BLIP2 Representation Learning Objectives

6

Background BLIP2 Representation Learning Objectives

[text prompt], the [subject text] is [subject prompt]"

Generating training image pair

- Subject-specific Fine-tuning and Inference
- Structure-controlled Generation with ControlNet
- Subject-driven Editing with Attention Control

zero-sort subject-driven generation

wearing top hat

as plushie

painting by Van Gogh painted green

on a red rug at Palace of Versailles seen from back made of lego at grand canyon

on the beach

decorated on cup wearing glasses

few-step fine-tuned subject-driven generation Background

silver scuplture bronze sculpture

paper sculpture

as perfume atomizer as teapot

10

structure controled subject-driven generation

subject-driven image editing with attention control

- context-appearence entanglement
- failing to address the text prompt
- wrong spatial composition

Subject images

A backpack on top of a **purple rug** in a forest.

Subject images

A **cube-shaped** bear plushie.

Subject images

A sneaker **on top of** a mirror.

Outline

4 Experiments

Author

DEADiff: An Efficient Stylization Diffusion Model with Disentangled Representations

Tianhao Qi^{1*}, Shancheng Fang¹, Yanze Wu²⁺, Hongtao Xie^{1™}, Jiawei Liu², Lang Chen², Qian He², Yongdong Zhang¹

¹University of Science and Technology of China, ²ByteDance,

*Works done during the internship at ByteDance, *Project lead, ©Corresponding author,

Author

Tianhao Qi

PhD, <u>University of Science and Technology of China</u> 在 mail.ustc.edu.cn 的电子邮件经过验证 cross-modal generation object detection

First author: PhD student in University of Science and Technology of China, major in cross-modal generation, object detection

Author

Zhang Yongdong

<u>University of Science and Technology of China</u> 在 ustc.edu.cn 的电子邮件经过验证

1999-2002 Tianjin University, PhD, Signal and Information Processing 2002-2017 Researcher, Institute of Computing Technology, Chinese Academy of Sciences Professor at the University of Science and Technology of China from 2017 to present

Research directions include multimedia content analysis, cybersecurity, and computational imaging.

Results preview

Reference

(a) T2I-Adapter

(b) DEADiff

Contributions

Disentangle style and semantic representation of the reference image

Injecting image style/semantic representation to different crossattention layers

Disentangle style and semantic representation of the reference image

Injecting image style/semantic representation to different

Injecting image style/semantic representation to different crossattention layers

Injecting image style/semantic representation to different crossattention layers

Establishing paired datasets

Text prompt combination

Image generation and collection

Paired images selection

Outline

- Evaluation
 - Style Similarity (SS)
 - Text Alignment capability (TA)
 - Image Quality (IQ)
 - Subjective Preference (SP)

Quantitative Comparisons

Method	SS↑	IQ↑	TA↑	SP↑
InST [37]	0.215	5.148	0.237	6.3
CAST [36]	0.224	4.922	0.282	8.7
StyTr ² [3]	0.214	5.037	0.282	13.1
T2I-Adapter [17]	0.241	5.500	0.224	2.7
IP-Adapter [34]	0.274	<u>5.598</u>	0.155	-
DEADiff	0.229	5.840	0.284	69.0

Ablations

Method	Style Similarity [↑]	Text Alignment↑
Baseline	0.274	0.148
+ DCM	0.259	0.224
+ STRE	0.222	0.286
+ SERE	0.221	0.287
DEADiff	0.224	0.289

"A dog in a bucket."

Reference Baseline +DCM

+STRE

+SERE

DEADiff

Applications

Ablations

"A robot"

Ablations

"A cat wearing a hat."

Reference SD v1.5 Realistic Vison V5.1 DreamShaper V8

Thanks!

BLIP2 pre-training

