

Interpreting CLIP's Image Representation via Text-Based Decomposition

ICLR 2024 Oral

Presenter: Lehong Wu 2024.01.28

- Authorship
- Background
- Method & Experiments
- Conclusion

(2) Create dataset classifier from label text

Radford et al. Learning transferable visual models from natural language supervision. https://arxiv.org/abs/2103.00020

Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. https://arxiv.org/pdf/2010.11929

- ViT Architecture
 - Multi-head self-attention(MSA)
 - MLP
 - Residual connection
- CLS token as output
- Projected to vision-language space

 $M_{\text{image}}(I) = P \mathsf{ViT}(I)$ $P \in \mathbb{R}^{d' \times d}$

Grad-CAM

- Heuristics: gradient of feature map highlights important regions
- Pixel-level visualization with Guided Backpropagation
- Suppress negative gradient by ReLU

Selvaraju et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. https://arxiv.org/abs/1610.02391

Background: Heatmap-based Interpretability

Attribute-based Heatmap Methods

- Define each variable's attribution score to the output
- Define a back propagation rule (e.g. Layer-wise Relevance Propagation)

Heatmap Methods Limitation

- Do not interpret models' intermediate representation
- Only interpret localization-relevant features

Samek et al. Interpreting the Predictions of Complex ML Models by Layer-wise Relevance Propagation. https://arxiv.org/pdf/1611.08191.pdf

- Output Interpretability
 - Heatmap-based (e.g. Grad-CAM, LRP)

Cons: only interpret localization-relevant features

• Editing-based

Use generative models (e.g. StyleGAN) to edit input images

Cons: rely on generative models

- Representation Interpretability
 - Invert features into image (e.g. Feature Visualization)

Cons: by optimization; subjectivity

- Interpret neurons & neuron connections (e.g. Rosetta Neurons)
- Text-based Interpretability
 - Use text to describe images/representations
 - Interpret CLIP representations

Post-hoc Concept Bottleneck Model

- Map features to a text-based concept space
- Any pre-trained image encoder
- Concept space constructed with a text encoder (e.g. CLIP)

Feature Visualization of CLIP

• Maximize neuron activation

• Maximize similarity with the given text

jealous

bored

intimate

surprised

Goh et al. Multimodal neurons in artificial neural networks. https://distill.pub/2021/multimodal-neurons

Background: CLIP Interpretability

Understanding CLIP's Spelling capability

• Train a learn-to-spell and a forget-to-spell model by optimizing opposite objectives

Materzynska et al. Disentangling visual and written concepts in CLIP. https://arxiv.org/abs/2206.07835

- Decompose CLIP representation into direct contributions of each layer, each attention *head*, and each *position* (image token)
- Understanding *heads*
 - Technique: label heads with text
 - Application: reduce spurious correlation; property-specific image retrieval
- Understanding *positions*
 - Technique: heatmap
 - Application: zero-shot segmentation

• Each module directly updates the residual stream:

$$\hat{Z}^l = \mathsf{MSA}^l(Z^{l-1}) + Z^{l-1}, \quad Z^l = \mathsf{MLP}^l(\hat{Z}^l) + \hat{Z}^l$$

• Decompose the final representation:

$$M_{\text{image}}(I) = P \operatorname{ViT}(I) = P \left[Z^0 \right]_{cls} + \underbrace{\sum_{l=1}^{L} P \left[\mathsf{MSA}^l(Z^{l-1}) \right]_{cls}}_{\mathsf{MSA \ terms}} + \underbrace{\sum_{l=1}^{L} P \left[\mathsf{MLP}^l(\hat{Z}^l) \right]_{cls}}_{\mathsf{MLP \ terms}}$$

Direct effects: components in the equation (this paper)
Indirect effects: influence of early layers on later layers

Experiments: Decomposition into Layers

- Use OpenCLIP trained on LAION-2B
- Mean-ablation: replace *output* components with mean values across the dataset in

zero-shot classification task

	Base	+ MLPs ablation		
	accuracy			
ViT-B-16	70.22	67.04		
ViT-L-14	75.25	74.12		
ViT-H-14	77.95	76.30		

MLP mean-ablation

- Conclusion
 - MLPs have negligible direct effects
 - Only the last MSAs have significant direct effects (this paper)

Method: Decomposition into Heads & Positions

One MSA component:

All MSA components:

•

$$\begin{split} \left[\mathsf{MSA}^{l}(Z^{l-1})\right]_{cls} &= \sum_{h=1}^{H} \sum_{i=0}^{N} x_{i}^{l,h}, \quad x_{i}^{l,h} = \alpha_{i}^{l,h} W_{VO}^{l,h} z_{i}^{l-1} \\ &\sum_{l=1}^{L} P\left[\mathsf{MSA}^{l}(T^{l-1})\right]_{cls} = \sum_{l=1}^{L} \sum_{h=1}^{H} \sum_{i=0}^{N} c_{i,l,h}, \quad c_{i,l,h} = P x_{i}^{l,h} \end{split}$$

where *i*, *l*, *h* represents token, layer, head

- Contract along certain dimension •
 - Head contribution •
 - Position(token) contribution •

$$c_{\text{head}}^{l,h} = \sum_{i=0}^{N} c_{i,l,h}$$
$$c_{\text{token}}^{i} = \sum_{l=1}^{L} \sum_{h=1}^{H} c_{i,l,h}$$

IJ

• Goal:

Find descriptions explaining the "principal components" of a head's contribution $c_{head}^{l,h}$

• Problem definition:

 \mathcal{T} : the set of text descriptions to find, size *m* hyperparam c_1, c_2, \dots, c_K : the head's contribution of all images

*Proj*_{\mathcal{T}}: projection onto the span of text representations in \mathcal{T}

• Maximize

$$V_{\text{explained}}(\mathcal{T}) = \frac{1}{K} \sum_{k=1}^{K} \|\operatorname{Proj}_{\mathcal{T}}(c_k - c_{\text{avg}})\|_2^2, \text{ where } c_{\text{avg}} = \frac{1}{K} \sum_{k=1}^{K} c_k.$$

Method: Understanding Heads

• Maximize
$$V_{\text{explained}}(\mathcal{T}) = \frac{1}{K} \sum_{k=1}^{K} \|\operatorname{Proj}_{\mathcal{T}}(c_k - c_{\text{avg}})\|_2^2$$
, where $c_{\text{avg}} = \frac{1}{K} \sum_{k=1}^{K} c_k$.

- Algorithm: TextSpan
 - Step1: initialize a description pool using ChatGPT-3.5
 - Step2: *greedily* select the description with highest variance of projection
 - Step3: update all vectors to be orthogonal to the selected text representation
 - Step4: repeat Step2-3 until *m* times

Algorithm 1: TEXTSPAN

Input: Head (l, h) contribution $c_{\text{head}}^{l,h}$ for K images stacked as rows in a matrix $C \in \mathbb{R}^{K \times d'}$, a pool of M text descriptions $\{t_i\}_{i=1}^M$, their corresponding CLIP text representations $R \in \mathbb{R}^{M \times d'}$ (projected to the head output space), and basis size m**Output:** A set of text descriptions \mathcal{T} and projected representations $C' \in \mathbb{R}^{K \times d'}$ Initialization: $C' \leftarrow \mathbf{0}_{K \times d'}, \mathcal{T} \leftarrow \phi$ for *i* in [1, ..., m] do $D \leftarrow RC^T$ $j^* \leftarrow \arg \max_{i=1}^M \operatorname{Var}(D[j]) \longrightarrow \text{Greedy selection}$ $\mathcal{T} \leftarrow \mathcal{T} \cup \{t_{j^*}\}$ for k in [1, ..., K] do $C'[k] \leftarrow C'[k] + \frac{\langle C[k], R[j^*] \rangle}{||R[j^*]||^2} R[j^*]$ Update contributions $C[k] \leftarrow C[k] - \frac{\langle C[k], R[j^*] \rangle}{||R[j^*]||^2} R[j^*]$ for k in [1, ..., M] do Update text representations $R[k] \leftarrow R[k] - \frac{\langle R[k], R[j^*] \rangle}{||R[j^*]||^2} R[j^*]$

L21.H11 ("Geo-locations")	L23.H10 ("Counting")		
Photo captured in the Arizona desert	Image with six subjects		
Picture taken in Alberta, Canada	Image with four people		
Photo taken in Rio de Janeiro, Brazil	An image of the number 3		
Picture taken in Cyprus	An image of the number 10		
Photo taken in Seoul, South Korea	The number fifteen		
L22.H11 ("Colors")	L22.H6 ("Animals")		
A charcoal gray color	Curious wildlife		
Sepia-toned photograph	Majestic soaring birds		
Minimalist white backdrop	An image with dogs		
High-contrast black and white	Image with a dragonfly		
Image with a red color	An image with cats		
L23.H12 ("Textures")	L22.H1 ("Shapes")		
Artwork with pointillism technique	A semicircular arch		
Artwork with woven basket design	An isosceles triangle		
Artwork featuring barcode arrangement	An oval		
Image with houndstooth patterns	Rectangular object		
Image with quilted fabric patterns	A sphere		

Layer 20, Head 12

Photo with grainy, old film effect Detailed illustration Serene beach sunset An image of the number 10 An image of the number 5

Layer 21, Head 5

Inquisitive facial expression Artwork featuring typographic patterns A photograph of a big object Reflective landscape Burst of motion

Heads without clear roles.

Top-5 results of TextSpan applied to the last 4 layers of CLIP-ViT-L.

The roles of heads in brackets are annotated *by human*.

Ablation study

- Project representation to the TextSpan bases
- Classification as evaluation
- Dataset: ImageNet
- Results
 - ChatGPT descriptions is better than common words in English & random vectors
 - Larger basis size *m* is better (60 enough for 768 dims)
 - Class-specific descriptions (28k) better than general descriptions (3.5k)

Application 1: Reducing spurious cues for classification

- Dataset: Waterbirds
- Setting: Zero-shot classification
- *Manually* mean-ablated the heads relevant to "location", according to TextSpan results

		top	
	base	random	ours
ViT-B-16	45.6	52.3	57.5
ViT-L-14	47.7	57.7	72.9
ViT-H-14	37.2	37.0	43.3

	water background	a land background
waterbird class	92.1 (93.1)	77.8 (66.2)
landbird class	72.9 (47.7)	94.9 (94.8)

Comparison with CLIP and random ablation.

Detailed comparison with CLIP.

Application 2: Property-based image retrieval

• Given a base image, retrieve its nearest neighbors for a certain head (by computing cosine similarity)

Same as evaluating heatmap-based methods

- Heatmap visualization by calculation similarity between tokens & text representations
- Highlighted regions are more aligned with the text

Zero-shot segmentation

- Method: binarize heatmap (with a threshold) to obtain a foreground / background segmentation
- Dataset: ImageNet-Segmentation (4,276 images from 445 categories)

	Pixel Acc. \uparrow	mIoU ↑	mAP↑
LRP (Binder et al., 2016)	52.81	33.57	54.37
partial-LRP (Voita et al., 2019)	61.49	40.71	72.29
rollout (Abnar & Zuidema, 2020)	60.63	40.64	74.47
raw attention	65.67	43.83	76.05
GradCAM Selvaraju et al. (2017)	70.27	44.50	70.30
Chefer et al. (2021)	69.21	47.47	78.29
Ours	75.21	54.50	81.61

Experiments: Understanding Heads & Positions

Green / Red border heatmaps correspond to the descriptions most / least similar to $c_{head}^{l,h}$ among TextSpan outputs.

- Interpreting CLIP image encoder by annotating heads with texts
- Application: removing spurious correlation, image retrieval
- Limitations and discussion:
 - Indirect effects?
 - Not all heads have clear roles
 - Heads are annotated manually
 - Analysis on text encoder and other architectures?

Thanks for listening!

Presenter: Lehong Wu 2024.01.28