CG-HOI: Contact-Guided 3D Human-Object Interaction Generation

CVPR 2024

Presenter: Jiahang Zhang 2024.3.31

SMPL: A Skinned Multi-Person Linear Model

Matthew Loper ^{*12} Naureen Mahmood^{†1} Javier Romero^{†1} Gerard Pons-Moll^{†1} Michael J. Black^{†1}

¹Max Planck Institute for Intelligent Systems, Tübingen, Germany ²Industrial Light and Magic, San Francisco, CA

SMPL Model

- Shape Parameters (10,)
- Pose Parameters (24,3)
- Vertex Number N = 6890

SMPL-H: hand+body **SMPL-X**: face+hand+body

Background: 3D Human Reconstruction

Model-Free Methods

Sampling is Matter: Point-guided 3D Human Mesh Reconstruction

Jeonghwan Kim^{1*} Mi-Gyeong Gwon^{1*} Hyunwoo Park¹ Hyukmin Kwon² Gi-Mun Um² Wonjun Kim^{1†} ¹Konkuk University ²Electronics and Telecommunications Research Institute

C×H×W N×H×W M=3 M=1 M=5 Backbone Softmax Heatmap Backbone Decoder 2D Heatmap Feature **D**×H×W Input **Result of** Transformer Transformer Transformer Encoder [ransformer Dimension Dimension **Mesh Estimation** 1x1 Convolution Feature ResBlock Decoder Reduction Target Feature Reduction Encoder Encoder Encoder ★ Point-guided Sampling D×H/8×W/8 O Positional Enc. for Spatial Information N ω 4 O Positional Enc. for Token **Grid Feature Grid Feature Result of** Decoder **Keypoint Estimation** Feature Sampling (1st Part)

Mesh Regression (2nd Part)

Background: 3D Human Reconstruction

Model-Based Methods

• Pose, shape, and camera parameters Θ

PyMAF: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop

Hongwen Zhang^{§‡*}, Yating Tian^{†*}, Xinchi Zhou[♯], Wanli Ouyang[♯], Yebin Liu[‡], Limin Wang[†] , Zhenan Sun[§] [§]CRIPAC, NLPR, Institute of Automation, Chinese Academy of Sciences, China [†]State Key Laboratory for Novel Software Technology, Nanjing University, China [‡]The University of Sydney, Australia [‡]Department of Automation, Tsinghua University, China

$$\mathcal{L}_{reg} = \lambda_{2d} ||K - \hat{K}|| + \lambda_{3d} ||J - \hat{J}|| + \lambda_{para} ||\Theta - \hat{\Theta}||, \quad (2)$$

where $|| \cdot ||$ is the squared L2 norm, \hat{K} , \hat{J} , and $\hat{\Theta}$ denote the ground truth 2D keypoints, 3D joints, and model parameters, respectively.

Background: 3D Human Motion Generation

Diffusion-Based

HUMAN MOTION DIFFUSION MODEL

Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir, Daniel Cohen-Or and Amit H. Bermano Tel Aviv University, Israel guytevet@mail.tau.ac.il

Background: 3D Human Motion Generation

Diffusion-Based

HUMAN MOTION DIFFUSION MODEL

Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir, Daniel Cohen-Or and Amit H. Bermano Tel Aviv University, Israel guytevet@mail.tau.ac.il

Background: 3D Human Motion Generation

Guided Motion Diffusion for Controllable Human Motion Synthesis

Korrawe Karunratanakul¹ Konpat Preechakul² Supasorn Suwajanakorn² Siyu Tang¹

¹ETH Zürich, Switzerland ²VISTEC, Thailand https://korrawe.github.io/gmd-project/

Diffusion-Based

Background: HOI Generation

THOR: Text to Human-Object Interaction Diffusion via Relation Intervention

Qianyang Wu¹, Ye Shi¹, Xiaoshui Huang², Jingyi Yu¹, Lan Xu¹, and Jingya Wang¹

¹ ShanghaiTech University² Shanghai AI Laboratory

< 8 >

Template Free Reconstruction of Human-object Interaction with Procedural Interaction Generation

Background: HOI Generation

Xianghui Xie^{1,2,3} Bharat Lal Bhatnagar⁴ Jan Eric Lenssen³ Gerard Pons-Moll^{1,2,3}

¹University of Tübingen, ²Tübingen AI Center, Germany ³Max Planck Institute for Informatics, Germany ⁴Meta Reality Labs

Background: Contact Prediction for HOI

DECO: Dense Estimation of 3D Human-Scene Contact In The Wild

Shashank Tripathi^{1*} Agniv Chatterjee^{1*} Jean-Claude Passy¹ Hongwei Yi¹ Dimitrios Tzionas² Michael J. Black¹ ¹Max Planck Institute for Intelligent Systems, Tübingen, Germany ²University of Amsterdam, the Netherlands

Stripathi, achatterjee, jpassy, hyi, black}@tue.mpg.de d.tzionas@uva.nl

Scene Context Branch Scene $|\mathcal{L}_s|$ Decoder \mathcal{L}_{pal}^{2D} **Contact Branch** Scene F_s Encoder Attention Cross MLP $-\mathcal{L}_{c}^{3D}$ F'_p GT GT 2D Pred F_p Part Contact Contact Contact Encoder Part Context Branch $|\mathcal{L}_p|$ Part Decoder

LEMON: Learning 3D Human-Object Interaction Relation from 2D Images

Background: Contact Prediction for HOI

Yuhang Yang¹, Wei Zhai^{1,†}, Hongchen Luo¹, Yang Cao^{1,2}, Zheng-Jun Zha¹ ¹ University of Science and Technology of China ² Institute of Artificial Intelligence, Hefei Comprehensive National Science Center

- Diffusion-based
- Conditioned on text description T, static geometry G
- Contact-guided inference

Diffusion Process

- Human surface: SMPL
- Object Transformation: global translation, rotation matrix
- Contact: distance between markers to the closest object geometry point

Diffusion Process

- Text encoder: CLIP
- Object Geometry encoder: PointNet
- Cross-Attention Mechanism for *hi*, *oi*, *ci*, to model inter-dependency

Object Motion Modeling

- Object motion is naturally most influenced by parts of the human body in very close contactto the object.
- Predict one hypotheses for each marker, instead one for the whole seq.

Formally, we predict object transformation hypotheses o_i^j for each contact point on the human body, and weigh them with the inverse of their predicted contact distance c_i^j :

$$o_i = \frac{1}{\sum_j c_i} \sum_{j=0}^N (\max(|c_i|) - |c_i^j|) o_i^j,$$
(5)

Loss Formulation

- Between Prediction and Ground-Truth
- Classifier-Free Guidance

$$\mathbf{L} = \lambda_h ||h_i - \hat{h_i}||_1 + \lambda_o ||o_i - \hat{o_i}||_1 + \lambda_c ||c_i - \hat{c_i}||_2,$$

Interaction Generation

- Explicit constraints during inference on human-object contact
- Apply a a cost function $G((x)_t)$ at each time step

$$\hat{\mu}_t = \mu_t + s \sum_t \nabla_{x_t} G(x_t),$$

 The input can also be replaced by the object trajectory without any new training.

Dataset

- CHAIRS: 46 subjects as their SMPL-X, interaction with chairs and sofas
- BEHAVE: 8 participants as their SMPL-H alongside 20 different objects

Evaluation Metrics

- **R-Precision**: the closeness of the text condition and generated HOI in latent feature space.
- **FID**: the similarity between generated and ground-truth distribution in encoded feature space.
- Diversity and MultiModality: motion variance across all text descriptions.
- Perceptual User Study

Quantitative Result

		BEHAVE					CHAIRS					
Task	Approach	R-Prec. (top-3) \uparrow	$\mathrm{FID}\downarrow$	Diversity \rightarrow								\rightarrow
	Real (human)	0.73	0.09	4.23	Which method generates more realistic human-object interactions?			Which method generates interactions that follow the text better?				
Text-Cond.	MDM [71]	0.52	4.54	5.44				tilut 1				
Human	InterDiff [84]	0.49	5.36	3.98	18.2%	27.2%	65.7%	100%	20.5%	26.9%	51.3%	
Only	Ours	0.60	4.26	4.92	81.8%	72.90/		- 75%	79.5%	72 10/	_	_
	Real	0.81	0.17	6.80		12.8%		50%		/3.170		
Motion-	InterDiff [84]	0.68	3.86	5.62				5070			48.7%	
Cond. HOI	Ours	0.71	3.52	6.89	-	-	34.3%	25%				
Text-	MDM [71]	0.49	9.21	6.51				09/				
Cond.	InterDiff [84]	0.53	8.70	3.85	MDM	InterDiff	GT	070	MDM	InterDiff	GT	
HOI	Ours	0.62	6.31	6.63	Ou	rs 📕	Baseline		O	urs	Baseline	

Table 1. Quantitative comparison with state-of-the-art approaches, **Figure 5.** Perceptual User Study. Participants significantly favor y on the human pose sequence, and motion-cond. denotes predictions our method over baselines, for overall realism and text coherence. ject behavior. For metrics with \rightarrow , results closer to the real distribution are better. Our approach outperforms these baselines in an three settings, indicating a strong learned correlation between human and object motion.

Qualitative Result

CG-HOI: Experiment

Qualitative Result

CG-HOI: Experiment

Ablation Study

Cond	Condition					
	Move a yogamat					
No Cross-Attention	No Contact Prediction					
Separate Contact Prediction	No Contact Weighting					
No Contact Guidance	Ours					

	BEHAVE				CHAIRS				
Approach	R-Prec. (top-3) \uparrow	FID \downarrow	Diversity \rightarrow	$MModality \rightarrow$	R-Prec. (top-3) \uparrow	$FID\downarrow$	Diversity \rightarrow	$MModality \rightarrow$	
Real	0.81	0.17	6.80	6.24	0.87	0.02	9.91	6.12	
No cross-attention	0.35	10.44	8.23	7.40	0.49	10.84	12.22	10.64	
No contact prediction	0.41	9.64	10.10	6.89	0.41	8.53	11.56	9.15	
Separate contact pred.	0.47	8.01	5.12	5.12	0.52	9.34	7.65	4.62	
No contact weighting	0.55	8.54	6.52	5.29	0.64	7.55	8.56	5.45	
No contact guidance	0.59	7.22	7.84	5.30	0.70	7.41	8.05	5.76	
Ours	0.62	6.31	6.63	5.47	0.74	6.74	8.91	5.94	

Some Applications

• Human motion generation given object trajectory.

Figure 7. Given an object trajectory at inference time, our method can generate corresponding human motion without re-training.

• Populating 3D scans. Generate realistic human motion sequences given a

static scene.

- Contact guided method for diffusion-based HOI generation.
- The first approach to address the task of generating realistic 3D HOI from text.
- Can generate motion that lasts up to 3 seconds.

- Seem to lack the temporal consistency contraint?
- 3D HOI training data is costly.

STRUCT Group Seminar

Thanks!