

Fractal Generative Models

Tianhong Li¹ Qinyi Sun¹ Lijie Fan² Kaiming He¹

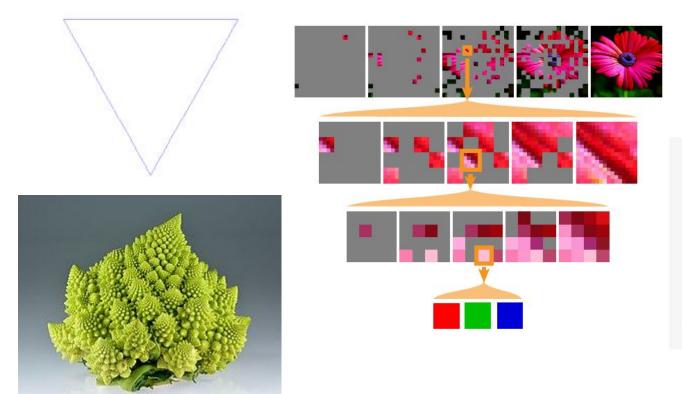
¹MIT CSAIL ²Google DeepMind

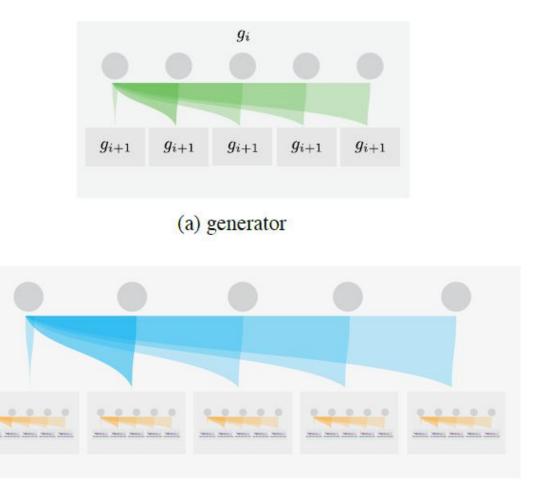
arXiv:2502.17437

Presenter: Wen Si 2025.3.9

Background: Fractals

- Self-similarity across different scales
- Recursive generation rule (generator)



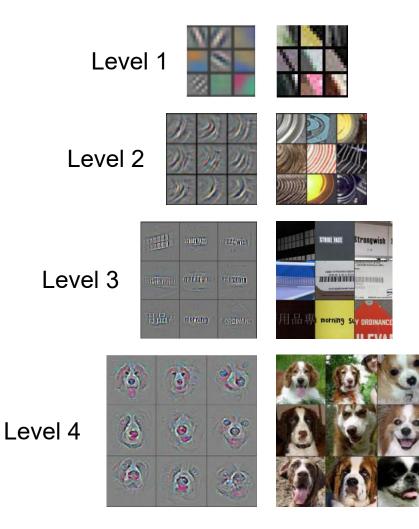


(b) fractal from the generator

Background: Hierarchical Representations

- Break down problems to different scales
- Sharable features across levels
- Deeper layers \rightarrow Higher levels

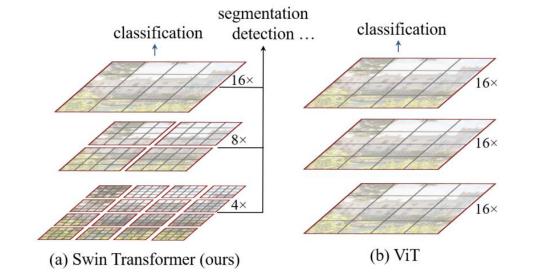
Area	CV	NLP
Low-level Feature	Pixels, Edges	Words, Phrases
Mid-level Feature	Patterns	Syntactic
High-level Feature	Objects	Semantic

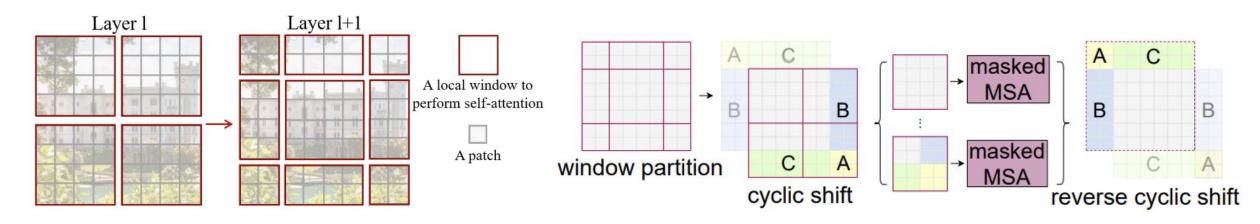


Background: Swin Transformers

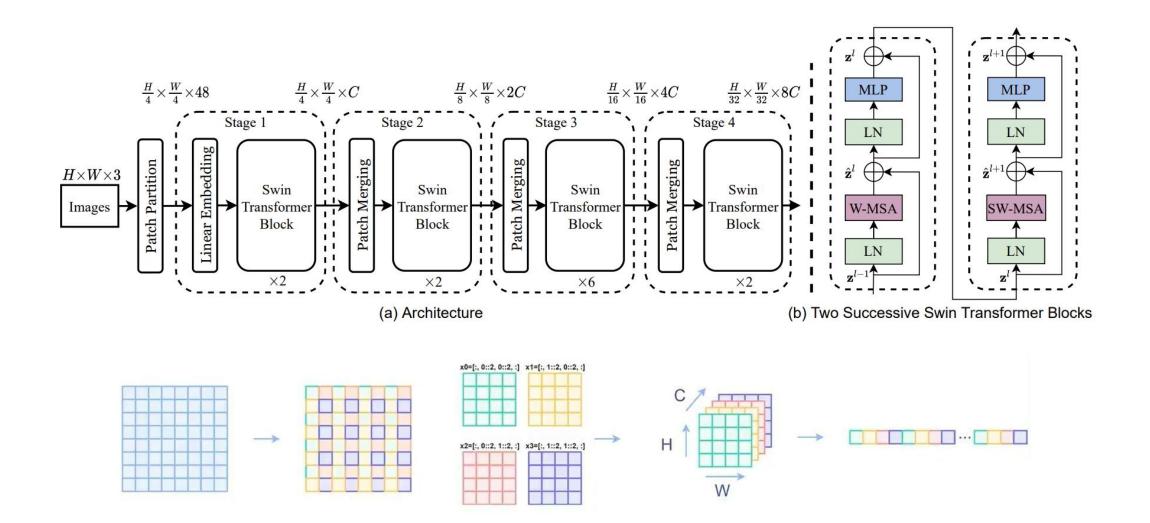
- Localized self-attention
- Linear complexity to image size

 $\Omega(\text{MSA}) = 4hwC^2 + 2(hw)^2C,$ $\Omega(\text{W-MSA}) = 4hwC^2 + 2M^2hwC,$





Background: Swin Transformers



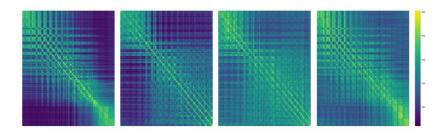
5

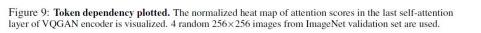
Background: Autoregressive Models (AR)

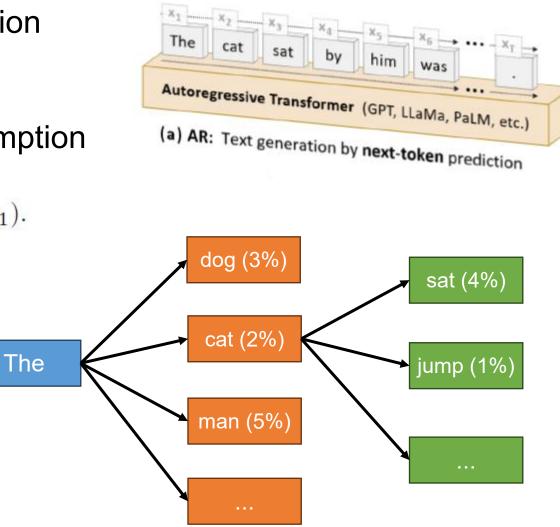
- Predicts next token's probability distribution
- Compatible with sequenced data
- Non-directional token dependency assumption

$$p(x_1, x_2, \dots, x_T) = \prod_{t=1}^T p(x_t \mid x_1, x_2, \dots, x_{t-1}).$$

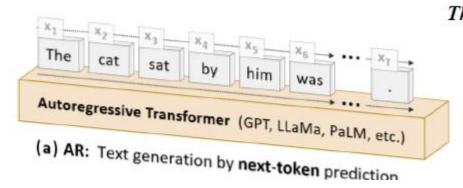
- Images are bidirectional
- Needs alignment across scales





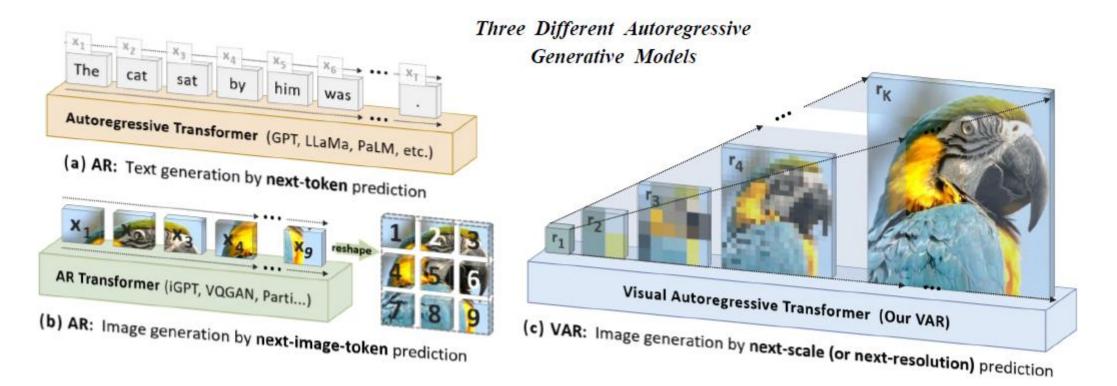


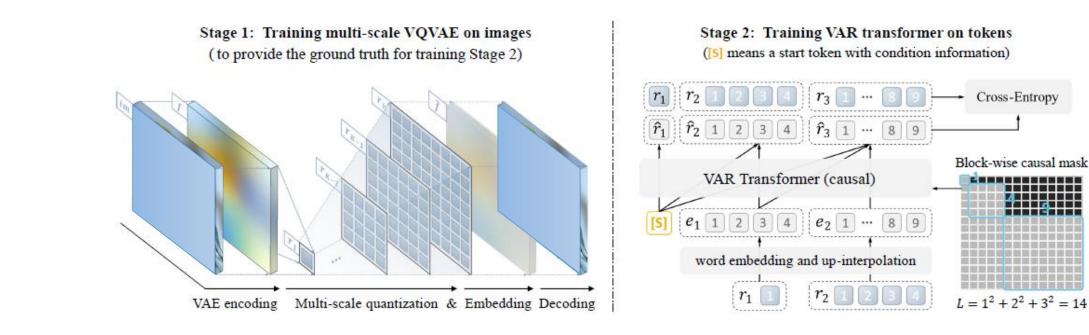
- Problem: Image data is non-sequential
- Modify AR, predict next token \rightarrow predict next scale



Three Different Autoregressive Generative Models

- Problem: Image data is non-sequential
- Modify AR, predict next token \rightarrow predict next scale

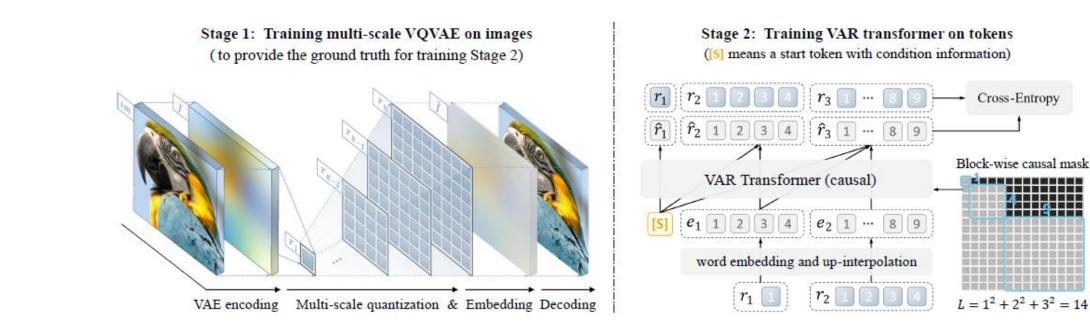




- Complexity of AR: $\sum_{i=1}^{n^2} i^2 = \frac{1}{6}n^2(n^2+1)(2n^2+1) \sim \mathcal{O}(n^6).$
- Complexity of VAR:

$$\sum_{i=1}^{k} n_i^2 = \sum_{i=1}^{k} a^{2 \cdot (k-1)} = \frac{a^{2k} - 1}{a^2 - 1}. \qquad \sum_{k=1}^{\log_a(n) + 1} \left(\frac{a^{2k} - 1}{a^2 - 1}\right)^2 \sim \mathcal{O}(n^4).$$

10



- Complexity of AR: $\sum_{i=1}^{n^2} i^2 = \frac{1}{6}n^2(n^2+1)(2n^2+1) \sim \mathcal{O}(n^6).$
- Complexity of VAR:

$$\sum_{i=1}^{k} n_i^2 = \sum_{i=1}^{k} a^{2 \cdot (k-1)} = \frac{a^{2k} - 1}{a^2 - 1}. \qquad \sum_{k=1}^{\log_a(n) + 1} \left(\frac{a^{2k} - 1}{a^2 - 1}\right)^2 \sim \mathcal{O}(n^4).$$

Modularization

- Modularize diffusion models as atomic building blocks
- Use diffusion loss to predict tokens

$$\begin{split} p(x^1,...,x^n) &= p(X^1,...,X^K) = \prod_k^K p(X^k \mid X^1,...,X^{k-1}). \\ X^k \; = \; \{x^i,x^{i+1}...,x^j\} \end{split}$$

- Predict multiple tokens simultaneously
- Random order masks
- Bidirectional attention

condition zMLP noisy $x_t \rightarrow$ → ε diffusion loss for p(x|z)(a) AR, raster order (b) AR, random order (c) Masked AR to predict at this step known/predicted unknown

Motivation

- To construct more advanced generative models from existing modules
- Intuition
 - Fractal structures exist in biological neural networks
 - Fractals are complex patterns that emerge from simple, recursive rules
- Autoregressive Model as Fractal Generator
 - Can handle k^n tokens with *n* layers, sequence length *k* manageable
 - Reduces computational cost; captures intrinsic hierarchical structure
 - Compatible with all divide-and-conquer-able data

- AR
 - Linear, causal
 - Next token prediction

 $p(x_1, x_2, \dots, x_T) = \prod_{t=1}^T p(x_t \mid x_1, x_2, \dots, x_{t-1}).$

- MAR
 - Modularized, masked
 - Next set-of-tokens prediction

$$\begin{split} p(x^1,...,x^n) &= p(X^1,...,X^K) = \prod_k^K p(X^k \mid X^1,...,X^{k-1}).\\ p(\{x^i,x^{i+1}...,x^j\} \mid x^1,...,x^{i-1}) \end{split}$$

• VAR

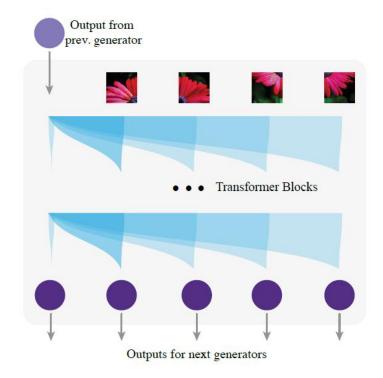
- Divide feature map to scales
- Next scale prediction $p(r_1, r_2, \dots, r_K) = \prod_{k=1}^K p(r_k \mid r_1, r_2, \dots, r_{k-1}),$
- FGM
 - Modularize entire models
 - Next model prediction

$$N = k^n, \quad n = \log_k(N)$$

 $p(x_1, \dots, x_{k^n}) = \prod_{i=1}^k p(x_{(i-1) \cdot k^{n-1}+1}, \dots, x_{i \cdot k^{n-1}} | x_1, \dots, x_{(i-1) \cdot k^{n-1}}).$

- **Task**: pixel-by-pixel image generation
 - Challenge: high dimensionality and complexity of raw image data
 - Importance: element-by-element generation with non-sequential data

- Architecture:
 - Divide last layer outputs to patches
 - Embed patches to a sequence
 - Feed the sequence to transformer blocks
 - Forward the embeddings to the next layer
 - 1st layer: 16×16

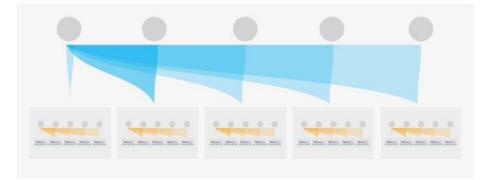


	de	j.	よ	淳
1895	PEKIN	G UN	IVER	SITY

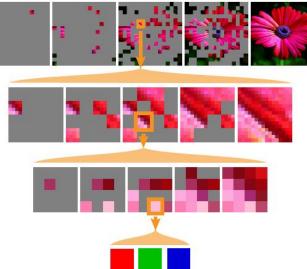
	62 û	image resolution		
	×	64×64×3	256×256×3	
seq. len.	g_1	256	256	
	g_2	16	16	
	g_3	3	16	
	g_4	H	3	
	g_1	32	32	
#layers	g_2	8	8	
	g_3	3	4	
	g_4	-	1	
	g_1	1024	1024	
hidden dim	g_2	512	512	
maden ann	g_3	128	256	
	g_4	H 1	64	
	g_1	403	403	
params (M)	g_2	25	25	
"paranis (IVI)	g_3	0.6	3	
	g_4	T 1	0.1	
	g_1	215	215	
#GFLOPs	g_2	208	208	
#OFLOPS	g 3	15	419	
	g_4	-	22	

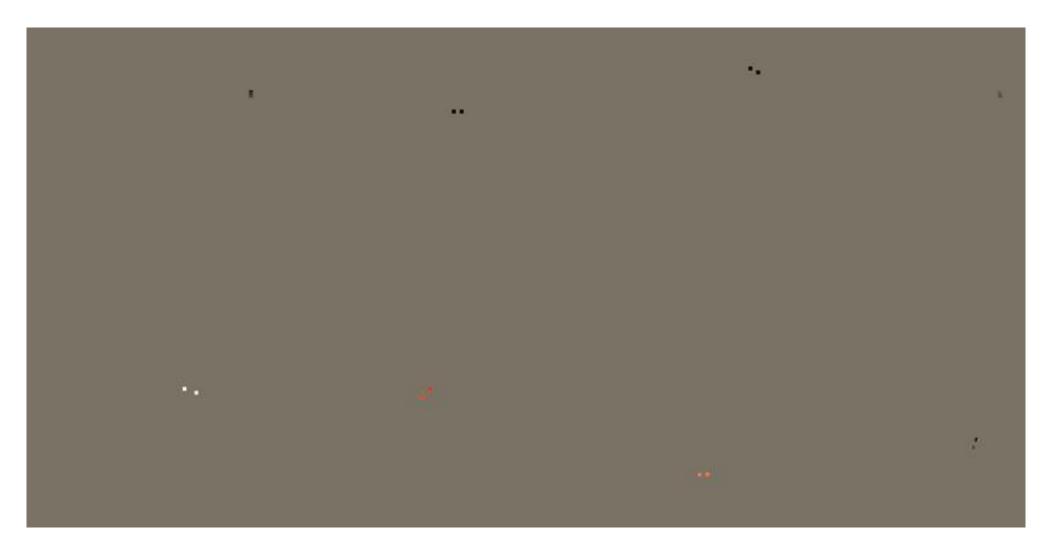
- 256×256 to 64×64 (number of GFLOPs):
 - 16 times big, only 2 times slow
- Compared to VAR (256×256 , last layer):
 - VAR: full attention across the image $(256 \times 256)^2 = 4,294,967,296$
 - FGM: only in 4×4 patches $(64 \times 64) \times (4 \times 4)^2 = 1,048,576$
 - 4096 times fast!

- Training
 - End-to-end training on raw image pixels
 - Go through fractal architecture breadth-first
 - Each model produces a set of outputs
 - Last layer predicts RGB channels
- Generation
 - Pixel-by-pixel
 - Go through fractal architecture depth-first
 - Generator captures interdependence between patches



(b) fractal from the generator





	Seq Len				
	g_1	g_2	g_3	#GFLOPs	<mark>NLL</mark> ↓
AR, full-length	12288	-	-	29845	N/A
MAR, full-length	12288	-	-	29845	N/A
AR, 2-level	4096	3	-	5516	3.34
MAR, 2-level	4096	3	-	5516	3.36
FractalAR (3-level)	256	16	3	438	3.14
FractalMAR (3-level)	256	16	3	438	3.15

- More layers, less cost, better NLL
- Outperforms previous AR models by a margin

8	type	NLL↓
iDDPM (Nichol & Dhariwal, 2021)	diffusion	3.53
VDM (Kingma et al., 2021)	diffusion	3.40
FM (Lipman et al., 2022)	diffusion [†]	3.31
NFDM (Bartosh et al., 2024)	diffusion	3.20
PixelRNN (van den Oord et al., 2016b)	AR	3.63
PixelCNN (van den Oord et al., 2016a)	AR	3.57
Sparse Transformer (Child et al., 2019)	AR	3.44
Routing Transformer (Roy et al., 2021)	AR	3.43
Combiner AR (Ren et al., 2021)	AR	3.42
Perceiver AR (Hawthorne et al., 2022)	AR	3.40
MegaByte (Yu et al., 2023)	AR	3.40
FractalAR	fractal	3.14
FractalMAR	fractal	3.15

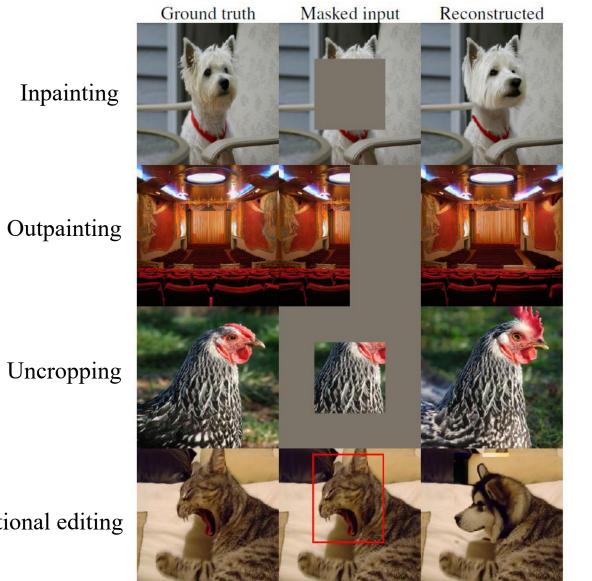
	type	#params	FID↓	IS ↑	Pre.↑	Rec. [†]
BigGAN-deep	GAN	160M	6.95	198.2	0.87	0.28
GigaGAN	GAN	569M	3.45	225.5	0.84	0.61
StyleGAN-XL	GAN	166M	2.30	265.1	0.78	0.53
ADM	diffusion	554M	4.59	186.7	0.82	0.52
Simple diffusion	diffusion	2B	3.54	205.3	-	-
VDM++	diffusion	2B	2.12	267.7	-	-
SiD2	diffusion	-	1.38	120	-	-
JetFormer	AR+flow	2.8B	6.64		0.69	0.56
FractalMAR-B	fractal	186M	11.80	274.3	0.78	0.29
FractalMAR-L	fractal	438M	7.30	334.9	0.79	0.44
FractalMAR-H	fractal	848M	6.15	348.9	0.81	0.46

- Strong IS and Precision
- Weak FID and Recall
- More params improves

- Already larger than GANs
- The only pixel-by-pixel model

Experiments: Generation Quality

Experiments: Conditional Pixel-by-pixel Prediction



Uncropping

Cross-conditional editing

- Proposes a new type of model structure: fractal generative models
- Reduces computational costs and accelerates training significantly
- Effective on pixel-by-pixel image generation
- Simple and widely applicable
- Discussion / Limitations:
 - Just an accelerated version of VAR?
 - Computational optimization requires more proof
 - Limited innovation on architecture

Thanks for listening!

Presenter: Wen Si 2025.3.9