

FlowIE: Efficient Image Enhancement via Rectified Flow CVPR 2024 Oral

Yixuan Zhu, Wenliang Zhao, Ao Li, Yansong Tang, Jie Zhou, Jiwen Lu

Department of Automation, Tsinghua University Tsinghua Shenzhen International Graduate School, Tsinghua University

Presenter: Junxin Lin 2025.3.16

• Deep learning has shown strong power in image enhancement

	Model	Task	Limitation
	BSRGAN	Blind image super- resolution	Generalization
	GFPGAN	Blind face restoration	Generalization
Conventional Methods	RestoreFormer	Blind face restoration	Generalization
	CodeFormer	Blind face restoration	Generalization
	SRDiff	Blind image super- resolution	Generalization
Diffusion-based methods	DiffBIR	Blind face restoration Blind image denoising Blind image super- resolution	Inference speed

DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior

Xingi Lin, Jingwen He, Ziyan Chen, Zhaoyang Lyu, Bo Dai, Fanghua Yu, Wanli Ouyang, Yu Qiao, Chao Dong

DiffBIR(Ours)

LQ(part) SwinIR

SCUNet-GAN

DiffBIR(Ours)

LQ(part)

CodeFormer

• Task:

- Generalization capability
- Less inference time cost

• Overview:

- Apply conditioned Rectified
 Flow to diffusion models
- Use mean value sampling
- **Performance:** surpass DiffBIR in inference speed and image details

• Learn a noise predictor to gradually denoise a Gaussian distribution into a given distribution

• Forward:
$$x_t = \sqrt{\overline{\alpha_t}} x_0 + \sqrt{1 - \overline{\alpha_t}} \cdot \epsilon$$

• **Reverse:** $x_{t-1} = \frac{1}{\sqrt{\alpha}} \left(x_t - \frac{1-\alpha_t}{\sqrt{1-\overline{\alpha}}} \cdot \epsilon(x_t, t) \right) + \sigma_t z$

Denoising Diffusion Probabilistic Models, NIPS 2020

- Latent diffusion model:
 - Pixel space \rightarrow latent space
 - Multimodal condition guidance

High-resolution Image Synthesis with Latent Diffusion Models, CVPR 2022

• **Problem:** long-time inference

DDPM

• Solution: one-step inference

Rectified Flow

$$\begin{split} L_{\text{VLB}} &= \mathbb{E}_{q(\text{xep})} \Big[\log \frac{q(\textbf{x}_{1:T} | \textbf{x}_{0})}{p(\textbf{x}_{0:T})} \Big] \\ &= \mathbb{E}_{q} \Big[\log \frac{\prod_{l=1}^{T} q(\textbf{x}_{l} | \textbf{x}_{l-1})}{p(\textbf{x}_{1}) \prod_{l=1}^{T} p(\textbf{x}_{l-1} | \textbf{x}_{l})} \Big] \\ &= \mathbb{E}_{q} \Big[-\log p_{\theta}(\textbf{x}_{T}) + \sum_{l=1}^{T} \log \frac{q(\textbf{x}_{l} | \textbf{x}_{l-1})}{p_{\theta}(\textbf{x}_{l-1} | \textbf{x}_{l})} \Big] \\ &= \mathbb{E}_{q} \Big[-\log p_{\theta}(\textbf{x}_{T}) + \sum_{l=2}^{T} \log \frac{q(\textbf{x}_{l} | \textbf{x}_{l-1})}{p_{\theta}(\textbf{x}_{l-1} | \textbf{x}_{l})} \Big] \\ &= \mathbb{E}_{q} \Big[-\log p_{\theta}(\textbf{x}_{T}) + \sum_{l=2}^{T} \log \frac{q(\textbf{x}_{l} | \textbf{x}_{l})}{p_{\theta}(\textbf{x}_{l-1} | \textbf{x}_{l})} + \log \frac{q(\textbf{x}_{l} | \textbf{x}_{0})}{p_{\theta}(\textbf{x}_{0} | \textbf{x}_{l})} \Big] \\ &= \mathbb{E}_{q} \Big[-\log p_{\theta}(\textbf{x}_{T}) + \sum_{l=2}^{T} \log \left(\frac{q(\textbf{x}_{l-1} | \textbf{x}_{l}, \textbf{x}_{0})}{p_{\theta}(\textbf{x}_{l-1} | \textbf{x}_{l})} + \frac{q(\textbf{x}_{l} | \textbf{x}_{0})}{q(\textbf{x}_{l-1} | \textbf{x}_{l})} \right) + \log \frac{q(\textbf{x}_{l} | \textbf{x}_{0})}{p_{\theta}(\textbf{x}_{0} | \textbf{x}_{l})} \Big] \\ &= \mathbb{E}_{q} \Big[-\log p_{\theta}(\textbf{x}_{T}) + \sum_{l=2}^{T} \log \frac{q(\textbf{x}_{l-1} | \textbf{x}_{l}, \textbf{x}_{0})}{p_{\theta}(\textbf{x}_{l-1} | \textbf{x}_{l})} + \log \frac{q(\textbf{x}_{l} | \textbf{x}_{0})}{q(\textbf{x}_{l-1} | \textbf{x}_{l})} + \log \frac{q(\textbf{x}_{l} | \textbf{x}_{0})}{p_{\theta}(\textbf{x}_{l} | \textbf{x}_{l})} \Big] \\ &= \mathbb{E}_{q} \Big[-\log p_{\theta}(\textbf{x}_{T}) + \sum_{l=2}^{T} \log \frac{q(\textbf{x}_{l-1} | \textbf{x}_{l}, \textbf{x}_{0})}{p_{\theta}(\textbf{x}_{l-1} | \textbf{x}_{l})} + \log \frac{q(\textbf{x}_{l} | \textbf{x}_{0})}{p_{\theta}(\textbf{x}_{l} | \textbf{x}_{l})} \Big] \\ &= \mathbb{E}_{q} \Big[\log \frac{q(\textbf{x}_{T})}{p_{\theta}(\textbf{x}_{T-1} | \textbf{x}_{l})} + \log \frac{q(\textbf{x}_{T} | \textbf{x}_{0})}{q(\textbf{x}_{l} | \textbf{x}_{0})} + \log \frac{q(\textbf{x}_{l} | \textbf{x}_{0})}{p_{\theta}(\textbf{x}_{0} | \textbf{x}_{l})} \Big] \\ &= \mathbb{E}_{q} \Big[\log \frac{q(\textbf{x}_{T})}{p_{\theta}(\textbf{x}_{T-1} | \textbf{x}_{l})} + \log \frac{q(\textbf{x}_{L} | \textbf{x}_{l})}{p_{\theta}(\textbf{x}_{L-1} | \textbf{x}_{l})} - \log p_{\theta}(\textbf{x}_{0} | \textbf{x}_{l})} \Big] \\ &= \mathbb{E}_{q} \Big[D_{\textbf{KL}} (q(\textbf{x} | \textbf{x} | \textbf{x}_{l}) + \frac{T}{1} \sum_{l=2}^{T} D_{\textbf{KL}} (q(\textbf{x}_{l-1} | \textbf{x}_{l}, \textbf{x}_{0}) \| p_{\theta}(\textbf{x}_{L} | \textbf{x}_{l}) - \log p_{\theta}(\textbf{x}_{0} | \textbf{x}_{l})} \Big] \\ &= \mathbb{E}_{q} \Big[D_{\textbf{KL}} (q(\textbf{x} | \textbf{x}_{l}) \| p_{\theta}(\textbf{x}_{l}) + \frac{T}{1} \sum_{l=2}^{T} D_{\textbf{KL}} (q(\textbf{x}_{l-1} | \textbf{x}_{l}, \textbf{x}_{l}) \| p_{\theta}(\textbf{x}_{l-1} | \textbf{x}_{l}) - \log p_{\theta}(\textbf{x}_{0} | \textbf{x}_{l})} \Big] \\ &= \mathbb{E}_{q} \Big[D_{\textbf{KL}} (q(\textbf{x} | \textbf{x}_{l}) \| p_{\theta}(\textbf{x}_{l}) + \frac{T}$$

- **Question:** find a transport map $T: \mathbb{R}^d \to \mathbb{R}^d$ from $X_0 \sim \pi_0$ to $X_1 \sim \pi_1$
- Build as a continuous normalized flow problem
 - $dX_t = v(X_t, t)dt$
- Main idea: Build straight flow from π_0 to π_1
 - $dX_t = (X_1 X_0)dt \Leftrightarrow X_t = tX_1 + (1 t)X_0, t \in [0, 1]$

- **1-Rectified:** $\min_{v} \int_{0}^{1} E[\|(X_{1} X_{0}) v(X_{t}, t)\|^{2}] dt$, with $X_{t} = tX_{1} + (1 t)X_{0}$
 - Randomly sampled pair $\langle X_0, X_1 \rangle$
 - Flows are not straight
 - $dX_t = v(X_t, t)dt$ promises the uniqueness

$$egin{split} \mathcal{L} &= \int_{0}^{1} \mathbb{E}_{x_{0},x_{1}} \left[\|x_{1} - x_{0} - v_{ heta}(x_{t},t)\|^{2}
ight] dt \ &= \int_{0}^{1} \mathbb{E}_{x_{0},x_{1}} \left[\|x_{1} - x_{0}\|^{2} + \|v_{ heta}(x_{t},t)\|^{2} - 2(x_{1} - x_{0})^{T}v_{ heta}(x_{t},t)
ight] dt \ &= \int_{0}^{1} \left\{ \mathbb{E}_{x_{0},x_{1}} \left[\|v_{ heta}(x_{t},t)\|^{2}
ight] - 2\mathbb{E}_{x_{0},x_{1}} \left[(x_{1} - x_{0})^{T}v_{ heta}(x_{t},t)
ight] \right\} dt + C \ &= \int_{0}^{1} \left\{ \mathbb{E}_{x_{t}} \left[\|v_{ heta}(x_{t},t)\|^{2}
ight] - 2\mathbb{E}_{x_{t}} [\mathbb{E}_{x_{0},x_{1}} \left[x_{1} - x_{0} \mid x_{t}
ight]
ight]^{T} \mathbb{E}_{x_{t}} \left[v_{ heta}(x_{t},t)
ight] \right\} dt + C \ &= \int_{0}^{1} \mathbb{E}_{x_{t}} \left[\|v_{ heta}(x_{t},t)\|^{2}
ight] - 2\mathbb{E}_{x_{t}} [\mathbb{E}_{x_{0},x_{1}} \left[x_{1} - x_{0} \mid x_{t}
ight]
ight]^{T} \mathbb{E}_{x_{t}} \left[v_{ heta}(x_{t},t)
ight] \right\} dt + C \ &= \int_{0}^{1} \mathbb{E}_{x_{t}} \left[\|\mathbb{E}_{x_{0},x_{1}} \left[x_{1} - x_{0} \mid x_{t}
ight] - v_{ heta}(x_{t},t) \|^{2}
ight] dt + C' \end{split}$$

(a) Linear interpolation (b) Rectified flow Z_t $X_t = tX_1 + (1-t)X_0$ induced by (X_0, X_1)

- **2-Rectified:** $\min_{v} \int_{0}^{1} E[\|(Z_1 Z_0) v(Z_t, t)\|^2] dt$, with $Z_t = tZ_1 + (1 t)Z_0$
 - Paired data $\langle Z_0, Z_1 \rangle$ from rectified flow, i.e. $T(Z_0) = Z_1$
 - Most of the flows are straightened

• Flow-based image enhancement:

- Apply conditioned Rectified Flow to diffusion models
- U-Net $\epsilon_{\theta} \rightarrow$ velocity predictor v_{θ}
- LQ input $z_{LQ} \rightarrow$ condition guidance C
- Improve quality via mean value sampling: more precise v_{pred} from z_0 to z_1

FlowIE: Pipeline

(b) Rectified flow

- Forward Euler Method:
 - $z_{t+\Delta t} = z_t + \Delta t \cdot v_{\theta}(z_t, t, C)$
 - may cause error accumulation
- Reduce error accumulation while obtaining correct results
- Lagrange's Mean Value Theorem

Lagrange's Mean Value Theorem: for function f: [a, b] → R continuous on [a, b] and differentiable on (a, b), exists c ∈ [a, b], such that f'(c) = f(b)-f(a)

b-a

FlowIE: Pipeline

FlowIE: Pipeline

- Face-related task (blind face restoration, face color enhancement, face inpainting):
 - Train datasets: FFHQ
 - Test datasets:
 - CelebA-Test (synthetic),
 - LFW-Test & CelebChild-Test & WIDER-Test (real-world)
- Blind image super-resolution:
 - Train datasets: ImageNet
 - Test datasets: RealSRSet & collect-100 (newly constructed)
- Use image restoration baseline SwinIR as τ_{ϕ}

- Blind face restoration:
 - Tune τ_{ϕ} on corresponding dataset
 - Lower FID
 - Higher PSNR, higher efficiency (compared with DiffBIR)

Method	LFW	Wild Datasets WIDER	s CelebChild		S	ynthetic Datase CelebA	et		FPS↑
_	FID↓	FID↓	FID↓	PSNR ↑	SSIM ↑	LPIPS↓	FID↓	IDS ↑	
GPEN [50]	51.95	46.41	76.62	21.3941	0.5745	0.4685	23.88	0.49	7.278
GCFSR [16]	52.18	40.89	76.32	21.8789	0.6070	0.4579	35.52	0.45	9.243
GFPGAN [42]	52.11	41.70	80.69	21.6953	0.6060	0.4304	21.69	0.49	8.152
VQFR [15]	49.92	37.89	74.75	21.3012	0.6125	0.4127	20.47	0.48	3.837
RestoreFormer [47]	48.41	49.82	71.09	21.0029	0.5289	0.4791	43.76	0.55	4.964
DMDNet [23]	43.38	40.53	79.37	21.6620	0.5997	0.4825	64.21	0.66	3.454
CodeFormer [58]	52.34	38.79	79.58	22.1513	0.5949	0.4057	22.23	0.48	5.188
DiffBIR [25]	39.61	33.51	77.74	21.7512	0.5968	0.4575	20.19	0.52	0.285
FlowIE (Ours)	38.66	32.41	74.25	21.9211	0.6005	0.4367	19.81	0.69	2.846

Synthetic Input

DiffBIR

FlowIE

Real Input

DiffBIR

- Blind image super-resolution:
 - Tune τ_{ϕ} on corresponding dataset
 - Higher MANIQA, higher efficiency (compared with DiffBIR)

Type	Method	MAN	FPS ↑	
-51		RealSRSet	Collect-100	1
	Real-ESRGAN+ [43]	0.5373	0.5901	1.875
GAN	BSRGAN [57]	0.5638	0.5889	1.725
UAN	SwinIR-GAN [24]	0.5296	0.5721	5.978
	FeMaSR [2]	0.5250	0.5718	3.167
ye	DDNM [44]	0.4539	0.4813	0.071
Diffusion	GDP [10]	0.4583	0.5237	0.016
	DiffBIR [25]	0.5906	0.6022	0.286
Flow	FlowIE (Ours)	0.5953	0.6087	2.853

FlowIE: Experiments

LQ

DiffBIR

FlowIE

- Face color enhancement
 - Fine-tune rectified flow

Real Input GFPGAN CodeFormer FlowIE

- Face inpainting
 - Fine-tune rectified flow

GPEN

CodeFormer

FlowIE

- w/o flow: direct distillation rather than using Rectified Flow
 - Set the student identical to v_{θ} during training
 - Fix t = 0 during training

Method	FID↓		MANIQA ↑		
111001100	CelebA	LFW	RealSRSet	Collect-100	
w/o flow	49.74	53.71	0.5311	0.5723	
w/o mid sample	25.19	48.95	0.5489	0.5805	
w/o init	27.76	52.63	0.5301	0.5698	
FlowIE (Ours)	19.81	38.66	0.5953	0.6087	

- w/o mid sample: always use Forward Euler Method instead of mean value sampling
 - Euler method: struggling to produce HQ images in very few steps (e.g. 5)
 - Mean value sampling: a more efficient process (< 5 steps)

Method	FID	FID↓ MANIQA↑		NIQA↑
	CelebA	LFW	RealSRSet	Collect-100
w/o flow	49.74	53.71	0.5311	0.5723
w/o mid sample	25.19	48.95	0.5489	0.5805
w/o init	27.76	52.63	0.5301	0.5698
FlowIE (Ours)	19.81	38.66	0.5953	0.6087

• w/o init: train model without initial stage model τ_{ϕ}

Method	FID↓		MANIQA↑	
	CelebA	LFW	RealSRSet	Collect-100
w/o flow	49.74	53.71	0.5311	0.5723
w/o mid sample	25.19	48.95	0.5489	0.5805
w/o init	27.76	52.63	0.5301	0.5698
FlowIE (Ours)	19.81	38.66	0.5953	0.6087

- Problems of mean value sampling
 - Necessity: 2-Rectified can straighten flows
 - Rationality:
 - FlowIE uses 1-Rectified
 - Some points of flows produced by 1-Rectified may not be differentiable

Thanks for listening!

Presenter: Junxin Lin 2025.03.16