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FlowIE: Background

Model Task Limitation

Conventional Methods

BSRGAN Blind image super-
resolution Generalization

GFPGAN Blind face restoration Generalization

RestoreFormer Blind face restoration Generalization

CodeFormer Blind face restoration Generalization

Diffusion-based 
methods

SRDiff Blind image super-
resolution Generalization

DiffBIR

Blind face restoration
Blind image denoising

Blind image super-
resolution

Inference speed

• Deep learning has shown strong power in image enhancement
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FlowIE: Background

DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior
Xinqi Lin, Jingwen He, Ziyan Chen, Zhaoyang Lyu, Bo Dai, Fanghua Yu, Wanli Ouyang, Yu Qiao, Chao Dong
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FlowIE: Overview

• Task: 

• Generalization capability 

• Less inference time cost

• Overview:

• Apply conditioned Rectified 

Flow to diffusion models

• Use mean value sampling

• Performance: surpass DiffBIR in 

inference speed and image details
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Background: Diffusion Model

• Learn a noise predictor to gradually denoise a Gaussian distribution into a 
given distribution

• Forward: �� = ���0 + 1 − �� ⋅ �

• Reverse: ��−1 = 1
�
 �� −

1−��

1− �
⋅ � ��, �  + ���

Denoising Diffusion Probabilistic Models, NIPS 2020



6

Background: Diffusion Model

• Latent diffusion model:
• Pixel space → latent space
• Multimodal condition guidance

High-resolution Image Synthesis with Latent Diffusion Models, CVPR 2022
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Background: Rectified Flow

• Problem: long-time inference • Solution: one-step inference

Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow, ICLR 2023



• Question: find a transport map �: �� → �� from �0 ∼ �0 to �1 ∼ �1

• Build as a continuous normalized flow problem
• ��� = � ��,  � ��

• Main idea: Build straight flow from �0 to �1
• ��� =  �1 − �0 �� ⇔ �� = ��1 +  1 − � �0,  � ∈ [0,1]
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Background: Rectified Flow

Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow, ICLR 2023



• 1-Rectified: min
�

 0
1�[  �1 − �0 − � ��, �  2] ��,    ���ℎ �� = ��1 +  1 − � �0

• Randomly sampled pair  �0, �1 
• Flows are not straight
• ��� = � ��,  � �� promises the uniqueness
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Background: Rectified Flow

Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow, ICLR 2023



• 2-Rectified: min
�

 0
1�[  �1 − �0 − � ��, �  2] ��,    ���ℎ �� = ��1 +  1 − � �0

• Paired data  �0, �1  from rectified flow, i.e. � �0 = �1
• Most of the flows are straightened
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Background: Rectified Flow

Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow, ICLR 2023
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FlowIE: Methods

• Flow-based image enhancement:

• Apply conditioned Rectified Flow to diffusion models

• U-Net ϵθ → velocity predictor vθ
• LQ input ��� → condition guidance �

• Improve quality via mean value sampling: more precise ����� from �0 to �1
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FlowIE: Pipeline



2-layer MLP + zero conv layer F

Pre-trained model Trainable copy of �� encoding & middle blocks
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FlowIE: Pipeline

� ← [ �� ��� ,  ��]

� ← � + ���� � 

� ← � �, � 
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FlowIE: Pipeline

��� = �ℎ ��� 

�� = � ⋅ �1 +  1 − � ⋅ �0

� ← [ �� ��� ,  ��]

� ← � + ���� � 

� ← � �, � 
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FlowIE: Pipeline

Forward Euler Method
zt+Δt = zt + Δt ⋅ vθ zt, t, C 
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FlowIE: Pipeline

• Forward Euler Method:
• zt+Δt = zt + Δt ⋅ vθ zt, t, C 

• may cause error accumulation

• Reduce error accumulation while 

obtaining correct results

• Lagrange’s Mean Value Theorem
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FlowIE: Pipeline

• Lagrange’s Mean Value Theorem: 

for function �: [�, �] → � continuous 

on [�, �] and differentiable on  �, � , 

exists � ∈ [�, �], such that �′ � =

� � −� � 
�−�
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FlowIE: Pipeline

z r+1 Δt = zrΔt + Δt ⋅ vθ zrΔt, rΔt, C 
Δ� = 1/�

�1 = �0 + �� ��Δ�, �Δ�, � 

� ← [ �� ��� ,  ��]

� ← � + ���� � 

� ← � �, � 
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FlowIE: Pipeline



20

FlowIE: Experiments

• Face-related task (blind face restoration, face color enhancement, face 

inpainting):

• Train datasets: FFHQ 

• Test datasets: 

• CelebA-Test (synthetic),

• LFW-Test & CelebChild-Test & WIDER-Test (real-world)

• Blind image super-resolution:

• Train datasets: ImageNet

• Test datasets: RealSRSet & collect-100 (newly constructed)

• Use image restoration baseline SwinIR as ��
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FlowIE: Experiments

• Blind face restoration: 

• Tune �� on corresponding dataset

• Lower FID

• Higher PSNR, higher efficiency (compared with DiffBIR)



22

FlowIE: Experiments
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FlowIE: Experiments
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FlowIE: Experiments

• Blind image super-resolution: 

• Tune �� on corresponding dataset

• Higher MANIQA, higher efficiency (compared with DiffBIR)
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FlowIE: Experiments
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FlowIE: Experiments

• Face color enhancement

• Fine-tune rectified flow
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FlowIE: Experiments

• Face inpainting

• Fine-tune rectified flow
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FlowIE: Ablation Study

• w/o flow: direct distillation rather than using Rectified Flow

• Set the student identical to �� during training

• Fix � = 0 during training
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FlowIE: Ablation Study

• w/o mid sample: always use Forward Euler Method instead of mean value 

sampling

• Euler method: struggling to produce HQ images in very few steps (e.g. 5)

• Mean value sampling:  a more efficient process (< 5 steps)
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FlowIE: Ablation Study

• w/o init: train model without initial stage model ��
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FlowIE: Ablation Study
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FlowIE: Discussion

• Problems of mean value sampling

• Necessity: 2-Rectified can straighten flows

• Rationality: 

• FlowIE uses 1-Rectified

• Some points of flows produced by 1-Rectified may not be differentiable
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