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Introduction: Photomontage

The Constructor, El Lissitsky, 
1924

Album cover for The Beatles, 
Sgt. Pepper’s Lonely Hearts 
Club Band, 1967

Mask XXXV, John 
Stezaker, 2007
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Generative Photomontage: Task Description

Generation of ControlNet:

akin to a dice roll, hard to achieve a single image that captures everything a user wants.

What if the user wants to keep the dear, moon and background from each result respectively? 
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Generative Photomontage: Task Description

Existing methods that add various conditions to text-to-image models for greater user control fail 

to adhere closely to the input conditions.

Faithfully preserve & compositing harmoniously, using a stack of ControlNet output image.
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Generative Photomontage: Task Description
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Generative Photomontage: Task Description

Generative Photomontage
Appearance Mixing and more
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Background

Attention

Diffusion Model

ControlNet

Traditional
Segmentation

Generative
Photomontage
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Background: Attention Mechanism

Calculate similarity in ���, and weight sum using �.
• Long-range dependency and dynamic weight
• Global information capturing

��������� �, �, � = ������� 
���

��
  �
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Background: Cross Attention

��������� �, �, � = ������� 
���

��
  �

� ∈ ℝ�×�� , � ∈ ℝ�×�� , � ∈ ℝ�×��

Q comes from the image, while K and V come from the conditional control.

Q :  Specifies the image’s structure and layout

K :  Compact representation of the generated image

V :  Injects detailed appearance information into the output

Yuval Alaluf, Daniel Garibi, Or Patashnik, Hadar AverbuchElor, and Daniel Cohen-Or. Cross-image attention for zeroshot appearance transfer. In ACM SIGGRAPH, 2024.
Mingdeng Cao. Masactrl: Tuning-free mutual self-attention control for consistent image synthesis and editing. In IEEE International Conference on Computer Vision (ICCV), 2023.
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Background: ControlNet

Adding Conditional Control to Text-to-Image Diffusion Models
• Original model is frozen to preserve pretrained abilities

•  Conditions are injected from different scale
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Background: ControlNet

Due to the zero convolutions, ControlNet always predicts high-quality images during the entire training. 

At a certain step in the training process, the model suddenly learns to follow the input condition.
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Background: Traditional Segmentation

Max-Flow/Min-Cut

https://blog.csdn.net/Ponyo_HPfishy/article/details/103127138
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Background: Traditional Segmentation

Segmentation with 2 labels � and �
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Generative Photomontage: Task Description

Existing methods that add various conditions to text-to-image models for greater user control fail 

to adhere closely to the input conditions.

Faithfully preserve & compositing harmoniously, using a stack of ControlNet output image.
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Generative Photomontage: Task Description

Segmentation

Composition



Step1: Segmentation with Graph Cut
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An image stack of � images, labeled 1 to �.
Assign the image label � to pixel �� �  , �� � = �� �  .

From sparse to dense: optimization



Step1: Segmentation with Feature-Space Graph Cut
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“K represents features of the generated image”



Step1: Segmentation with Feature-Space Graph Cut
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Optimization: to minimize the energy cost function.

Obeying the conditional control is highly appreciated. A natural seam is highly appreciated.



Segmentation with Feature-Space Graph Cut (Skip)

21

Energy Cost for Optimization: pixel-scale layer label assignment 

� ≈ 106

�� �  is a feature vector derived from the key features K of image � at location �. To capture 
the most important features, �� �  consists of the top-10 PCA components of K at location �.

Pairwise costsUnary costs

� ≈ 102

� ≈ 101

Encourage the segmentation boundaries to align with 
the common semantic edges across all images(Ks).

S: Stroke      L: Label      p, q: pixel from �� 



Unary costs

Segmentation with Feature-Space Graph Cut: Max-Flow/Min-Cut

Energy Cost for Optimization: pixel-scale layer label assignment 

Pairwise costs

22

Suppose that there are only 
two labels.

User’s Stroke Segmentation

1e6

1e6



Segmentation with Feature-Space Graph Cut: Max-Flow/Min-Cut

Energy Cost for Optimization: pixel-scale layer label assignment 

Pairwise costsUnary costs

+ �-expansion

Thus we got the segmentation result!
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Suppose that there are only 
two labels.

User’s Stroke Segmentation

1e6

1e6



Generative Photomontage Method: Composition
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?
Segmentation via graph cut
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Generative Photomontage Method: Composition

�

�
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Generative Photomontage Method: Composition
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Generative Photomontage Method: Composition
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Generative Photomontage Method: Composition

“� influences the image structure, while 
� and � influence the appearance.”
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Generative Photomontage Method: Results

Appearance Mixing
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Generative Photomontage Method: Results

Shape and Artifacts Correction
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Generative Photomontage Method: Results

Prompt Alignment
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Generative Photomontage Method: Evaluation

Graph Cut vs SAM

mask
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Generative Photomontage Method: Evaluation

Global appearance

Local appearance fidelity
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Generative Photomontage Method: Conclusion

Pros:

• Treat ControlNet output as intermediate outputs, avoid complex algorithms.

• Training-free method!

• Gives users more fine-grained control over the final output.
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Generative Photomontage Method: Conclusion

Cons:

• If the target object has a curvy outline, it may require additional user strokes to obtain a finer 

boundary.

• If the images differ significantly in scene structure, it will rely more on the user to select 

proper regions to form a valid scene.

• Needs explanation to the selection of �,   ��
����� and the calculation of evaluation standards.
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