JanusFlow: Harmonizing Autoregression and Rectified Flow for Unified Multimodal Understanding and Generation

CVPR 25'

Yiyang Ma^{1,2}, Xingchao Liu¹, Xiaokang Chen¹, Wen Liu¹, Chengyue Wu^{1,3}, Zhiyu Wu¹, Zizheng Pan¹, Zhenda Xie¹, Haowei Zhang¹, Xingkai Yu¹, Liang Zhao¹, Yisong Wang^{1,4}, Jiaying Liu², Chong Ruan¹

¹DeepSeek-AI, ²Peking University, ³The University of Hong Kong, ⁴Tsinghua University

马逸扬 2025.03.30

Content

- Authors
- Background
- Method
- Experiments

Content

- Authors
- Background
- Method
- Experiments

Large Vision-Language Models

LLaVA: Combining pre-trained visual encoder and LLMs

Problem: Do pre-trained models and text-only losses limit the performance?

Large Vision-Language Models

Qwen VL series

[4] Qwen Team. Qwen2-VL: Enhancing vision-language model's perception of the world at any resolution, arXiv 2409.[5] Qwen Team. Qwen2.5-VL Technical report, arXiv 2502.

Large Vision-Language Models

[6] DeepSeek-AI. DeepSeek-VL2: Mixture-of-experts vision-language models for advanced multimodal understanding, arXiv2412.

Large Vision-Language Models

Fuyu-8B

[2] Rohan Bavishi et al. Fuyu-8B: A multimodal architecture for ai agents, https://www. adept. ai/blog/fuyu-8b.

Large Vision-Language Models

EVE: Encoder-free vision-language models

[3] Haiwen Diao et al. Unveiling encoder-free vision-language models, NIPS24'.

Unified Understanding and Generation Models

Emu: Additional generative models

[6] Quan Sun et al. Emu: Generative pretraining in multimodality, ICLR24'.

Unified Understanding and Generation Models

Chameleon: Unified AR for both tasks

[7] Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models, arXiv2405'.

Unified Understanding and Generation Models

Show-o: Combining MAGVIT and AR

[8] Jinheng Xie et al. Show-o: One single transformer to unify multimodal understanding and generation, ICLR25'. [9] Lijun Yu et al. Language model beats diffusion -- tokenizer is key to visual generation, ICLR24'.

Unified Understanding and Generation Models

Transfusion: Combining diffusion and AR

Unified Understanding and Generation Models GPT-40

[11] OpenAI. Addendum to GPT-4o system card: Native image generation, https://cdn.openai.com/11998be9-5319-4302-bfbf-1167e093f1fb/Native_Image_Generation_System_Card.pdf.

Content

- Authors
- Background
- Method
- Experiments

JanusFlow

- Understanding: Same as LLaVA-like models.
- Generation: Backbone as DiT.
- Semantics are directly processed by the LLM without additional generative models as decoder.

JanusFlow

- Decouple the task of understanding and generation.
- Assist the backbone to handle both of the two tasks.

JanusFlow

- The sampling process:
 - Randomly initialize noisy image and obtain the token sequence.
 - Predict the velocity in one step and repeat the steps.

JanusFlow

• Introduce the understanding features as regularizations of generation (REPA).

 $\mathcal{L}_{REPA}(\theta, \varphi) = -\mathbb{E}_{x \sim \mathcal{D}_{gen}} \left[sim(stop_grad(f_{enc}(x^{res})), h_{\varphi}(q_{\theta}(z_t))) \right]$

Content

- Authors
- Background
- Method
- Experiments

Implementations

- DeepSeek-LLM 1.3B as backbone.
- Understanding:
 - SigLIP-Large-Patch/16 as understanding encoder.
- Generation:
 - Employ Rectified Flow as the implementation of diffusion.
 - Employ SDXL-VAE.
 - Regularize the feature after the 6-th layer.
- Training stages shown in the table.
- Trained for 845B tokens.

	Stage 1	Stage 2	Stage 3
Learning Rate	1.0×10^{-4}	1×10^{-4}	2.0×10^{-5}
LR Scheduler	Constant	Constant	Constant
Weight Decay	0.0	0.0	0.0
Gradient Clip	1.0	1.0	1.0
Optimizer	AdamW	$V(\beta_1 = 0.9, \beta_2)$	2 = 0.95
Warm-up Steps	2,000	0	1,000
Training Steps	10,000	380,000	26,000
Batch Size	512	512	256
Data Ratio	50:50:0	14:80:6	21:70:9

Understanding

Туре	Model	LLM Param	POPE	MME-P	MMB _{dev}	SEED	VQAv2 _{test}	GQA	MMMU	MM-Vet	ChartQA	TextVQA
	MobileVLM [12]	2.7B	84.9	1288.9	59.6	172-1	2	59.0	(21)	12	2 1 2	47.5
	MobileVLM-V2 [13]	2.7B	84.7	1440.5	63.2	-	-	61.1	-	-	-	57.5
	LLaVA-Phi [109]	2.7B	85.0	1335.1	59.8	-	71.4	144	9 <u>4</u> 3	28.9	3 - 3	48.6
	LLaVA [58]	7 B	76.3	809.6	38.7	33.5	-	-		25.5	1077.0	-
	LLaVA-v1.5 [56]	7B	85.9	1510.7	64.3	58.6	78.5	62.0	35.4	31.1	-	58.2
	InstructBLIP [15]	7 B	-	-	36.0	53.4	-	49.2	-	26.2	-	50.1
	Qwen-VL-Chat [4]	7 B	-	1487.5	60.6	58.2	78.2	57.5	-	-	66.3	61.5
Und. Only	LLaVA-NeXT [57]	7 B	-	1519.3	-	-	-	-	35.1	-	54.8	-
	Qwen2-VL [94]	7 B	-	87.8	-	-	-	-	54.1	62.0	83.0	84.3
	IDEFICS-9B [44]	8B	-	828	48.2	-	50.9	38.4	(<u>_</u> 5)	-	1	25.9
	Emu3-Chat [95]	8B	85.2	-	58.5	68.2	75.1	60.3	31.6	-	68.6	64.7
	InstructBLIP [15]	13B	78.9	1212.8	_	-	<u></u>	49.5	-	25.6	-	50.7
	LLaVA-v1.5-Phi-1.5 [100]	1.3B	84.1	1128.0	-	-	75.3	56.5	30.7	-	-	-
	MobileVLM [12]	1.4B	84.5	1196.2	53.2	-	-	56.1	-	-	-	41.5
	MobileVLM-V2 [13]	1.4B	84.3	1302.8	57.7		-	59.3	-	1970	-	52.1
	Gemini-Nano-1 [89]	1.8B	-		-		62.7		26.3	-	53.6	62.5
	LWM [59]	7B	75.2	828	2	-	55.8	44.8	-	9.6	_	-
	VILA-U [99]	7 B	85.8	1401.8	-	59.0	79.4	60.8	-	33.5	8 	60.8
	Chameleon [88]	7 B	-	-	-	-	6 -1	200	22.4	8.3	2 4 2	<u></u>
2257272	DreamLLM [†] [19]	7B	-	-	-	-	72.9	-	÷.	36.6	-	41.8
Unified	LaVIT [†] [37]	7B	-	-	-	-	66.0	46.8	-		-	₹.
	Emu [†] [87]	13B	-	1 7 1	-		52.0	5 .	3 	-	8 7 5	=
	NExT-GPT [†] [98]	13B	-	-	-	-	66.7	-	-	-	-	₩
	Show-0 [100]	1.3B	73.8	948.4	-	-	59.3	48.7	25.1	-	-	-
	Janus [97]	1.3B	87.0	1338.0	69.4	63.7	77.3	59.1	30.5	34.3	1.17	-
	JanusFlow (Ours)	1.3B	88.0	1333.1	74.9	70.5	79.8	60.3	29.3	30.9	64.6	55.5

Understanding

User: What are the kinds of fruits in this picture?

JaunsFlow (Ours): The fruits in the picture are banana, strawberry, mango, persimmon, blueberry, and lime.

User: Describe this image.

JaunsFlow (Ours): Kid's Favourite Fruits is a bar graph. The x-axis shows the fruits. The y-axis shows the number of kids who like the fruit. The orange is the most popular fruit. The banana is the least popular fruit.

User: How many penguins in the picture?

JaunsFlow (Ours): There are 11 penguins in the picture.

Generation

DPG-Bench

1.3B

1.3B

10.10

9.51

Janus [93]

JanusFlow (Ours)

ConEval							12									
			Gen	Lvai						Method	Global	Entity	Attribute	Relation	Other	Overall ↑
Туре	Method	Params	Single Obj.	Two Obj.	Count.	Colors	Pos.	Color Attri.	Overall ↑	SDv1.5 [75]	74.63	74.23	75.39	73.49	67.81	63.18
	LlamaGen [86]	0.8B	071	0.34	0.21	0.58	0.07	0.04	0.32	PixArt-α [9]	74.97	79.32	78.60	82.57	7 <mark>6</mark> .96	71.11
	LDM [77]	1.4B	0.92	0.29	0.23	0.70	0.02	0.05	0.37	Lumina-Next [105]	82.82	88.65	86.44	80.53	81.82	74.63
	SDv1 5 [77]	0.9B	0.92	0.38	0.25	0.76	0.04	0.06	0.43	SDXL [71]	83.27	82.43	80.91	86.76	80.41	74.65
	$Pix Art-\alpha$ [9]	0.5D	0.98	0.50	0.44	0.80	0.04	0.07	0.48	Playground v2.5 [48]	83.06	82.59	81.20	84.08	83.50	75.47
	SDv2 1 [77]	0.00	0.98	0.50	0.44	0.85	0.07	0.17	0.50	Hunyuan-DiT [54] PixArt-Σ [10] Emu3-Gen [91] JanusFlow (Ours)	84.59	80.59	88.01	74.36	86.41	78.87
Gen. Only	DALL-F 2 [76]	6.5B	0.90	0.66	0.49	0.77	0.10	0.19	0.50		86.89	82.89	88.94	86.59	87.68	80.54
	Emu3-Gen [95]	8B	0.98	0.71	0.34	0.81	0.17	0.21	0.54		85.21	86.68	86.84	90.22	83.15	80.60
	SDXL [73]	2.6B	0.98	0.74	0.39	0.85	0.15	0.21	0.55		87.03	87.31	87.39	89.79	88.10	80.09
	IF-XL [17]	4.3B	0.90	0.74	0.66	0.81	0.13	0.35	0.61			Assessment and a				N. 2 THE MEDICAL STATE
	DALL-E 3 [6]	-	0.96	0.87	0.47	0.83	0.43	0.45	0.67			N <i>A</i> 11				
	Chameleon [88]	34B	-	-	-	_	-	-	0.39		MJHQ-FID					
	LWM [59]	7 B	0.93	0.41	0.46	0.79	0.09	0.15	0.47		Matha	d	Darama	FIDI		
	SEED-X [†] [27]	17B	0.97	0.58	0.26	0.80	0.19	0.14	0.49		Wietho	u	T al allis	riD↓		
Unified	Show-o [100]	1.3B	0.95	0.52	0.49	0.82	0.11	0.28	0.53		LWM [58] VILA-U 256 [95]		7B	17.77		
	Janus [97]	1.3B	0.97	0.68	0.30	0.84	0.46	0.42	0.61				7B	12.81		
	Transfusion [108]	7.3B	-	-	-	-	-	<u>-</u>	0.63		VILA-	U 384 [95]	7B	7.69		
	JanusFlow (Ours)	1.3B	0.97	0.59	0.45	0.83	0.53	0.42	0.63		Show-	o [96]	1.3B	15.18		

Generation

A corgi's head depicted as an explosion of a nebula, with vibrant cosmic colors like deep purples, blues, and pinks swirling around. The corgi's fur blends seamlessly into the nebula, with stars and galaxies forming the texture of its fur. Bright bursts of light emanate from its eyes, and faint constellations can be seen in the background, giving the image a surreal, otherworldly feel.

Beautiful surreal symbolism the mesmerizing vision of a Cleopatra Queen of Egypt, mesmerizing brown eyes, black hair and ethereal features, radiating celestial aura, super high definition, true lifelike color, perfect exposure, razor sharp focus, golden ratio, soft reflections, bokeh effect, fine art photography, cinematic compositing, authentic, professional.

A lone figure in dark robes ascends worn stone steps toward a glowing light in an ancient temple entrance. Ornate arches, lush greenery, and intricate carvings adorn the scene, evoking a mystical, high-fantasy atmosphere reminiscent of works by artists like Randy Vargas, with cinematic lighting and epic storytelling.

Generation

Massive cathedral church, battle between Heaven and hell, church on fire, 8k hyper real ultra sharp renaissance by Francisco Goya.

A handsome 24-year-old boy in the middle with sky color background wearing eye glasses, it's super detailed with anime style.

Happy dreamy owl monster sitting on a tree branch, colorful glittering particles, forest background, detailed feathers.

A man wearing Fedora hat with mafia style, realistic photography, intricate details, magical lighting, vibrant background, complex textures, rich colors, realistic style, front-facing view.

A vivid depiction of the Northern Lights dancing above the snow-covered mountains in Iceland, casting a mesmerizing glow across the sky.

A dark, high-contrast render of a psychedelic Tree of Life glowing brilliantly, illuminating swirling dust particles in a mystical, cavernous setting.

Ablation studies

A. w/o REPA.

B and C. w/o decoupling and decoupling w/o pre-trained understanding encoder.

D and E. only understanding and only generation w/ the same framework.

F. Final setting.

Exp. ID	REPA	Mod Und. Modules	lel Setting Gen. Modules	Type	Train. Iter.	Evaluation Benchmarks POPE↑ VQAv2 _{val} ↑ GQA↑ FID↓				CLIP↑
A	×	SigLIP	VAE [†] +ConvNeXt	Unified	50,000	82.40	69.62	54.43	19.84	24.94
B C	\$ \$	Shared VAE VAE+ConvNeXt	[†] +ConvNeXt VAE [†] +ConvNeXt	Unified Unified	50,000 50,000	78.13 75.30	53.94 55.41	44.04 44.44	18.05 17.53	26.38 26.32
D E	× ×	SigLIP	- VAE [†] +ConvNeXt	Und. Only Gen. Only	13,000 37,000	85.03	69.10 -	54.23	- 16.69	- 26.89
F	\checkmark	SigLIP	VAE [†] +ConvNeXt	Unified	50,000	84.73	69.20	54.83	17.61	26.40

Ablation studies

Effect of CFG and number of sampling step.

(a) Results of varying CFG Factors

(b) Results of Varying Numbers of Sampling Steps

Ablation studies

Effect of REPA.

Thanks for listening.

马逸扬 2025.03.30