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Background
Large Vision-Language Models
LLaVA: Combining pre-trained visual encoder and LLMs

Problem: Do pre-trained models and text-only losses limit the performance?

4[1] Haotian Liu et al. Visual instruction tuning, NIPS23'.



Background
Large Vision-Language Models
Qwen VL series

5[4] Qwen Team. Qwen2-VL: Enhancing vision-language model's perception of the world at any resolution, arXiv 2409.
[5] Qwen Team. Qwen2.5-VL Technical report, arXiv 2502.



Background
Large Vision-Language Models
DeepSeek-VL2

6[6] DeepSeek-AI. DeepSeek-VL2: Mixture-of-experts vision-language models for advanced multimodal understanding, arXiv2412. 



Background
Large Vision-Language Models
Fuyu-8B

7[2] Rohan Bavishi et al. Fuyu-8B: A multimodal architecture for ai agents, https://www. adept. ai/blog/fuyu-8b.



Background
Large Vision-Language Models
EVE: Encoder-free vision-language models

8[3] Haiwen Diao et al. Unveiling encoder-free vision-language models, NIPS24'.



Background
Unified Understanding and Generation Models
Emu: Additional generative models

9[6] Quan Sun et al. Emu: Generative pretraining in multimodality, ICLR24'. 



Background
Unified Understanding and Generation Models
Chameleon: Unified AR for both tasks

10[7] Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models, arXiv2405'. 



Background
Unified Understanding and Generation Models
Show-o: Combining MAGVIT and AR

11[8] Jinheng Xie et al. Show-o: One single transformer to unify multimodal understanding and generation, ICLR25'.
[9] Lijun Yu et al. Language model beats diffusion -- tokenizer is key to visual generation, ICLR24'.



Background
Unified Understanding and Generation Models
Transfusion: Combining diffusion and AR

12[10] Chunting Zhou et al. Transfusion: predict the next token and diffuse images with one multi-modal model, arXiv2408.



Background
Unified Understanding and Generation Models
GPT-4o

13[11] OpenAI. Addendum to GPT-4o system card: Native image generation, https://cdn.openai.com/11998be9-5319-4302-bfbf-
1167e093f1fb/Native_Image_Generation_System_Card.pdf.



Content
• Authors

• Background

• Method

• Experiments

14



Method
JanusFlow
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• Understanding: Same as LLaVA-like models.
• Generation: Backbone as DiT.
• Semantics are directly processed by the LLM without additional generative models as decoder.



Method
JanusFlow
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• Decouple the task of understanding and generation.
• Assist the backbone to handle both of the two tasks.



Method
JanusFlow
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• The sampling process:
• Randomly initialize noisy image and obtain the token sequence.
• Predict the velocity in one step and repeat the steps.



Method
JanusFlow
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• Introduce the understanding features as regularizations of generation (REPA).
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Experiments
Implementations
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• DeepSeek-LLM 1.3B as backbone.

• Understanding:

• SigLIP-Large-Patch/16 as understanding encoder.

• Generation:

• Employ Rectified Flow as the implementation of diffusion.

• Employ SDXL-VAE.

• Regularize the feature after the 6-th layer.

• Training stages shown in the table.

• Trained for 845B tokens.
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Experiments
Generation
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GenEval
DPG-Bench

MJHQ-FID
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Generation
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Experiments
Generation
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Experiments
Ablation studies
A. w/o REPA.

B and C. w/o decoupling and decoupling w/o pre-trained understanding encoder.

D and E. only understanding and only generation w/ the same framework.

F. Final setting.
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Experiments
Ablation studies
Effect of CFG and number of sampling step.
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Experiments
Ablation studies
Effect of REPA.
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