Flow to the Mode: Mode-Seeking Diffusion Autoencoders for State-of-the-Art Image Tokenization

arXiv 2025

Kyle Sargent, Kyle Hsu, Justin Johnson,

Li Fei-Fei, Jiajun Wu

Outline

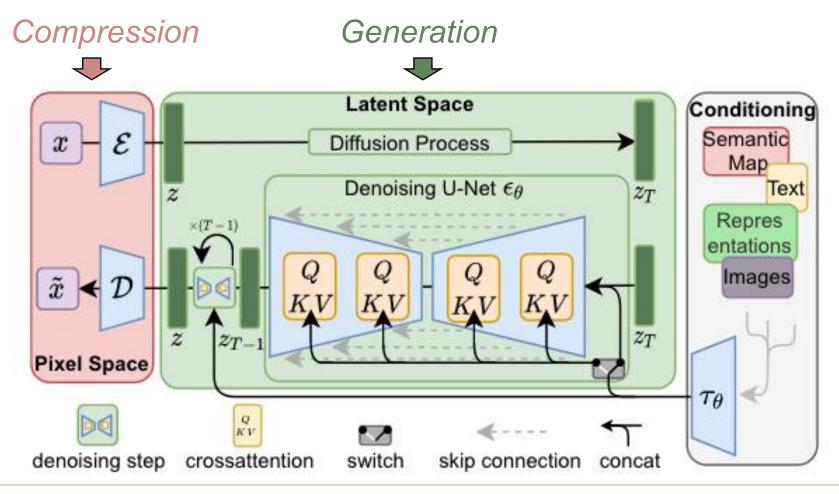
- Authorship
- Background
- Architecture
- Experiments

Two-stage Image Generation

- Tokenization / Compression
 - Image → Low dimensional latent → Image
- Generation
 - Learn the distribution of the latent

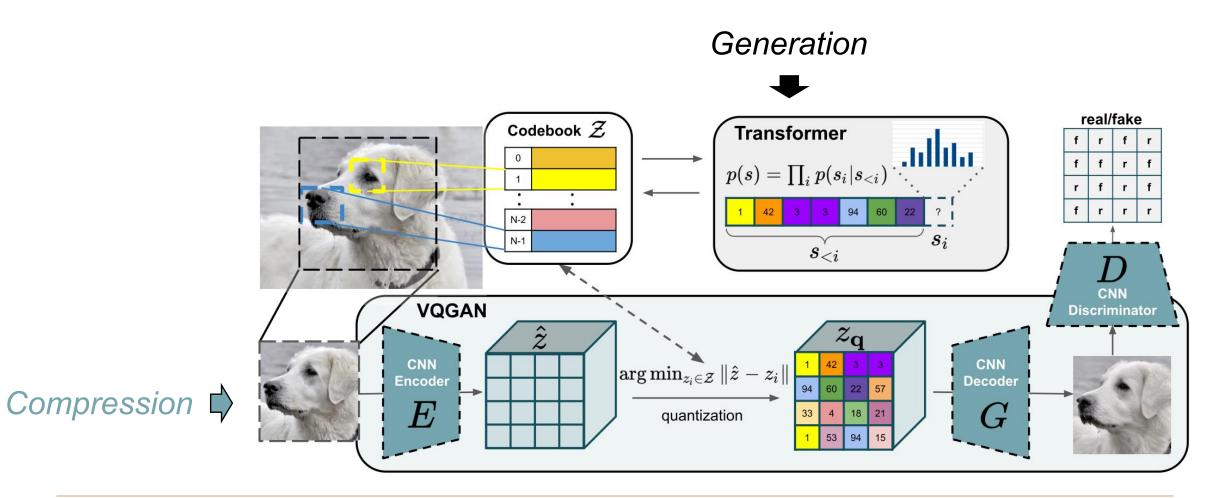
Latent can be continuous (*e.g.* LDM) or discrete (*e.g.* VQGAN).

Latent Diffusion Models



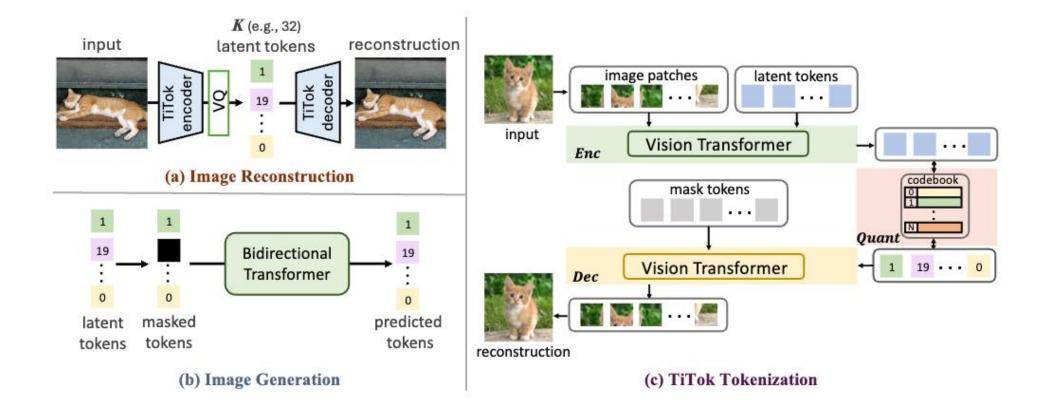
High-Resolution Image Synthesis with Latent Diffusion Models, CVPR 2022

VQGAN

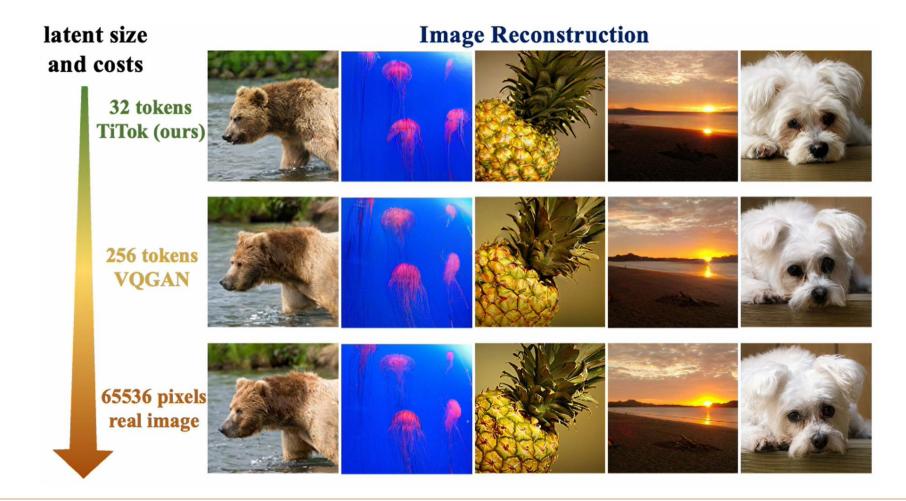


Taming Transformers for High-Resolution Image Synthesis, CVPR 2022

TiTok (1 Image = 32 Tokens)

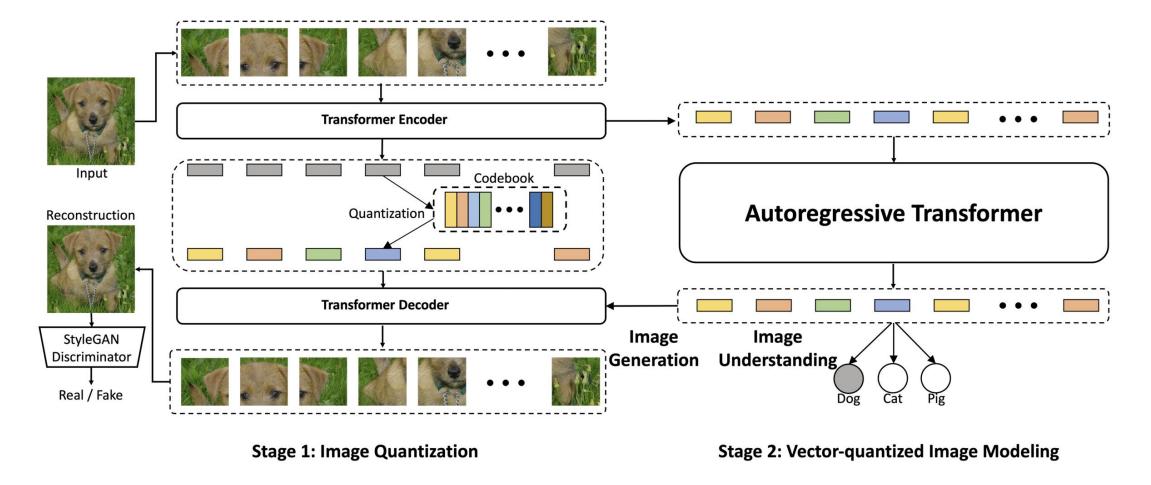


TiTok (1 Image = 32 Tokens)

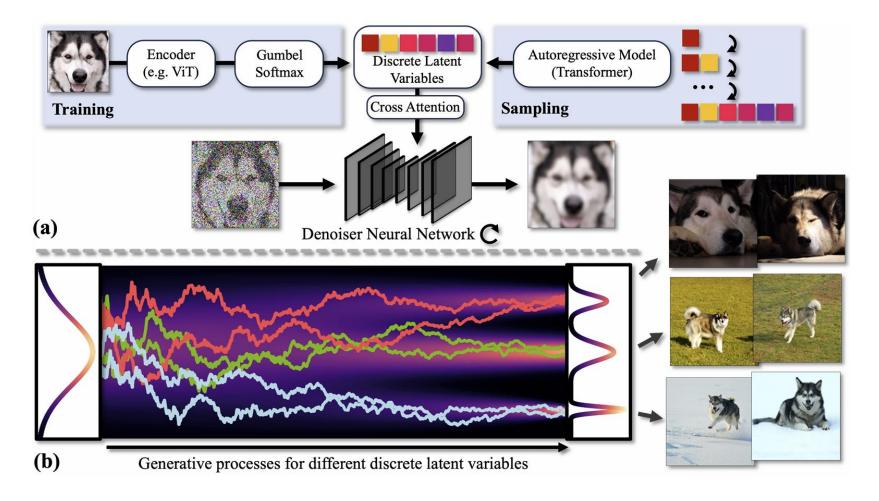


An Image is Worth 32 Tokens for Reconstruction and Generation, NeurIPS 2024

ViT-VQGAN



DisCo-Diff



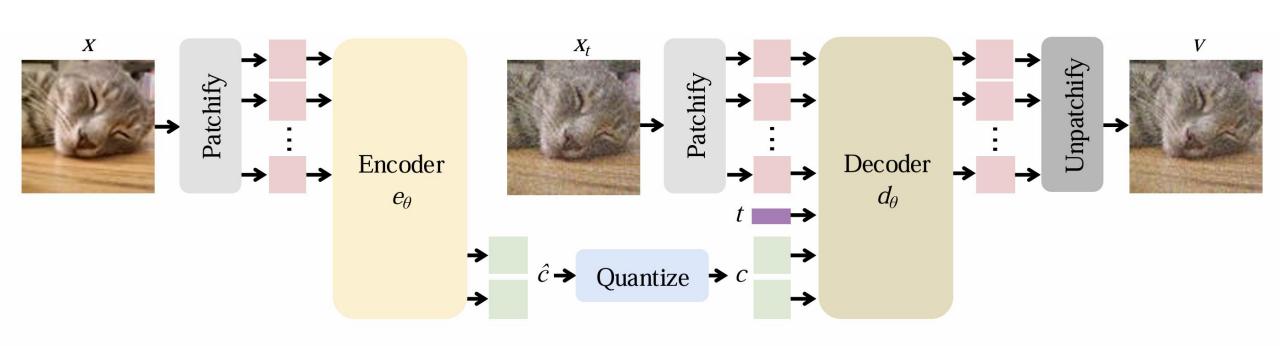
Flow to the mode

Highlights of this work

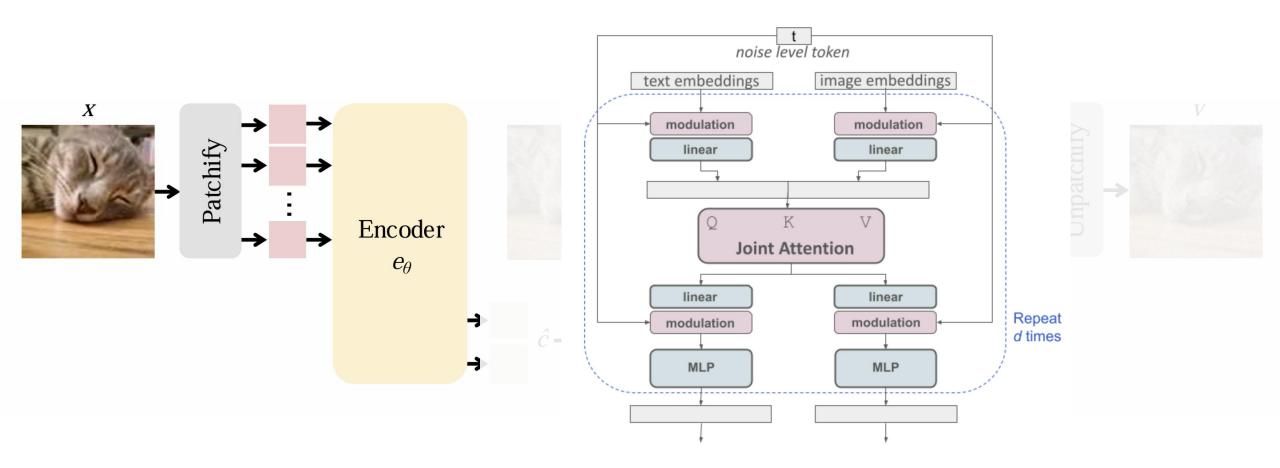
- 1D tokenizer with MMDiT
- w/o CNN, w/o any distillation
- w/o adversarial loss
- SOTA tokenizer bpp

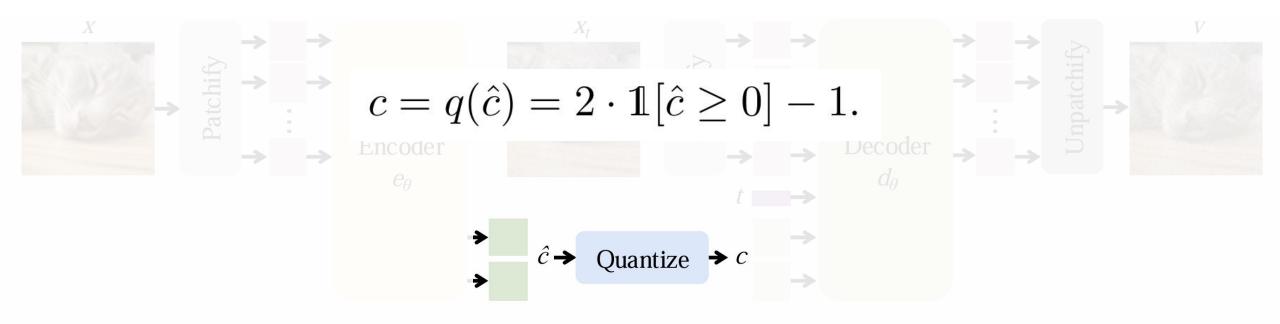
Outline

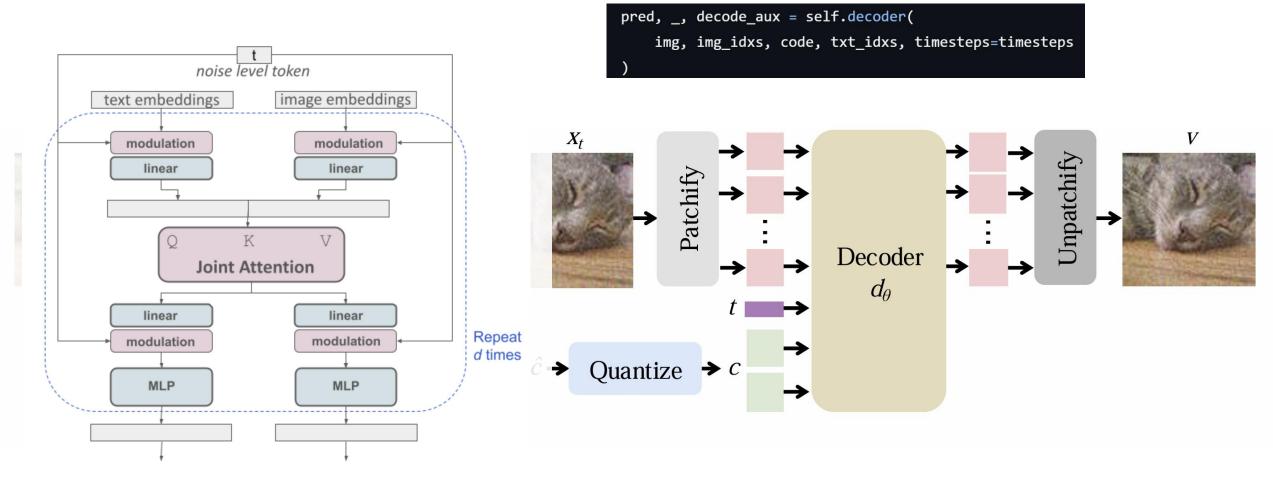
- Authorship
- Background
- Architecture
- Experiments



_, code, aux = self.encoder(img, img_idxs, txt, txt_idxs, timesteps=None)







Stage 1A Pre-Training

Flow matching loss

$$\mathcal{L}_{\text{flow}} = \mathbb{E}\bigg[\big\| x - z - d_{\theta}(x_t, q(e_{\theta}(x)), t) \big\|_2^2 \bigg].$$

Perceptual loss

$$\mathcal{L}_{\text{perc}} = \mathbb{E}\left[d_{\text{perc}}(x, x_t + td_{\theta}(x_t, q(e_{\theta}(x)), t))\right].$$

Quantization loss

$$\mathcal{L}_{ent} = \mathbb{E} \left[H(q(\hat{c})] - H(\mathbb{E} \left[q(\hat{c}) \right]) \right]$$

$$\mathcal{L}_{\text{commit}} = \mathbb{E}\left[\left\|\hat{c} - q(\hat{c})\right\|_{2}^{2}\right].$$

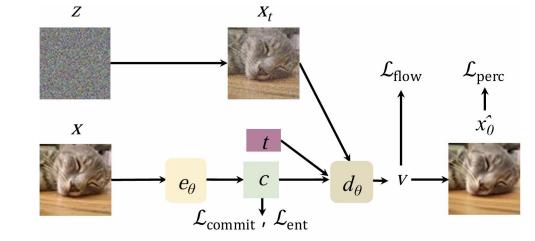


Figure 4. Stage 1A. The encoder and decoder are trained end-toend with output losses \mathcal{L}_{perc} , \mathcal{L}_{flow} and latent losses \mathcal{L}_{commit} , \mathcal{L}_{ent} .

Stage 1B Post-Training

Choose random timestep set

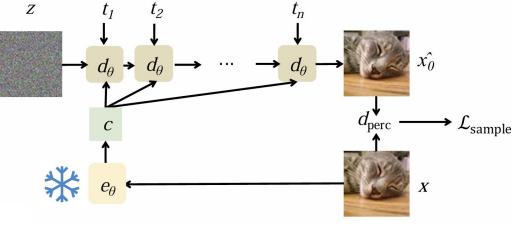
 $t_1, ..., t_n$

Predict

$$d_{t_i}(x_t) = x_t + (t_{i+1} - t_i)d_{\theta}(x_t, c, t_i).$$

Perceptual loss (and pre-defined flow loss)

$$\mathcal{L}_{\text{sample}} = \mathbb{E} \bigg[d_{\text{perc}} \left(x, d_{t_n} \circ d_{t_{n-1}} \circ \cdots \circ d_{t_1}(z) \right) \bigg]$$



Stage 2 Generation

Use generative module in MaskGiT / TiTok

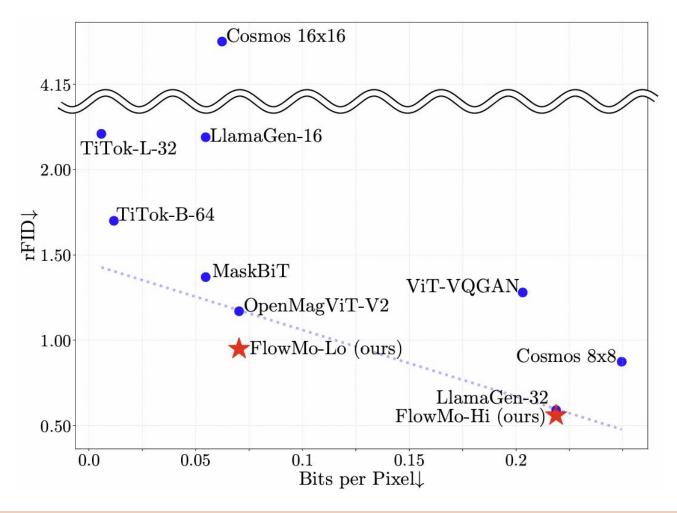
Outline

- Authorship
- Background
- Architecture
- Experiments

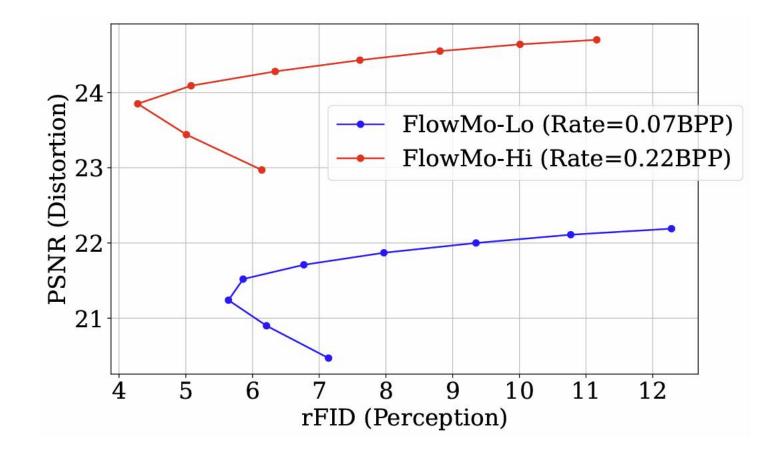
Reconstruction

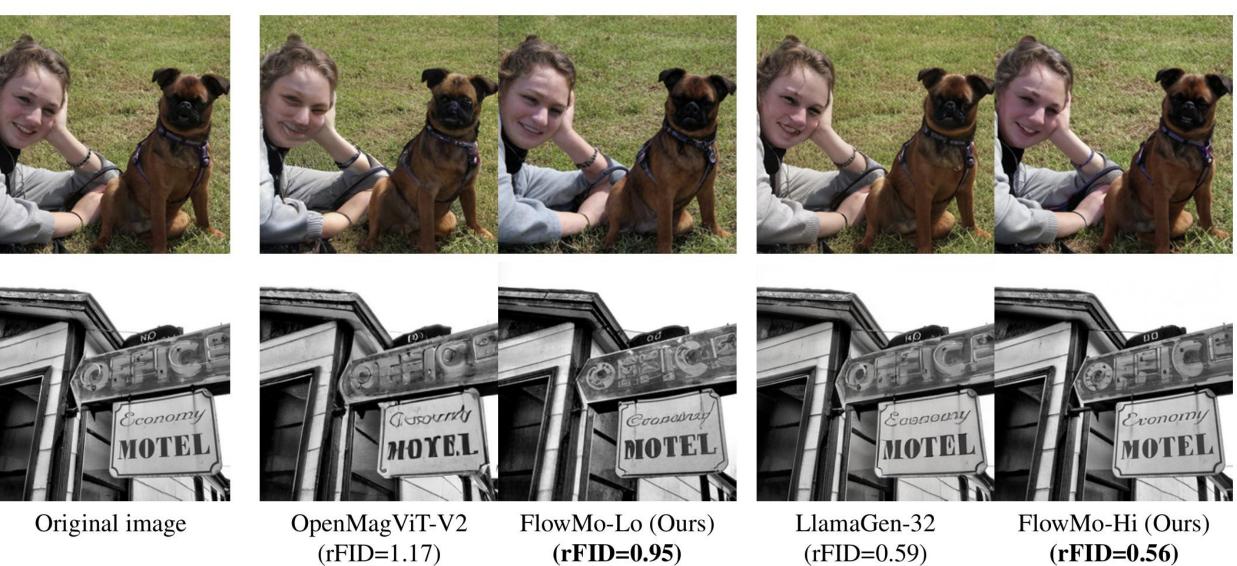
BPP	Model	Tokens per image	Vocab size	rFID↓	PSNR ↑	SSIM ↑	LPIPS↓
0.006	TiTok-L-32 [63]	32	2^{12}	2.21	15.60	0.359	0.322
0.012	TiTok-B-64 [63]	64	2^{12}	1.70	16.80	0.407	0.252
0.023	TiTok-S-128 [63]	128	2^{12}	1.71	17.52	0.437	0.210
0.055	LlamaGen-16 [53] MaskBiT [†] [57]	256 256	2^{14} 2^{14}	2.19 1.37	20.67 21.5	0.589 0.56	0.132
0.062	Cosmos DI-16x16 [63]	256	$pprox 2^{16}$	4.40	19.98	0.536	0.153
0.070	OpenMagViT-V2 [38] FlowMo-Lo (ours)	256 256	2^{18} 2^{18}	1.17 0.95	21.63 22.07	0.640 0.649	0.111 0.113
0.203	ViT-VQGAN [†] [61]	1024	2^{13}	1.28	=	-	-
0.219	LlamaGen-32 [53] FlowMo-Hi (ours)	1024 1024	2^{14} 2^{14}	0.59 0.56	24.44 24.93	0.768 0.785	0.064 0.073
0.249	Cosmos DI-8x8 [63]	1024	$\approx 2^{16}$	0.87	24.82	0.763	0.072

rFID - bpp



PSNR - rFID trade-off





Original image

Reconstructed (OpenMagViT-V2 [38]) Reconstructed (FlowMo-A)

Generation

Tokenizer	FID \downarrow	$\mathbf{IS}\uparrow$	sFID \downarrow	Prec. ↑	Rec. \uparrow
OpenMagViT-V2	3.73	241	10.66	0.80	0.51
FlowMo-Lo (ours)	4.30	274	10.31	0.86	0.47

Table 2. Generation results. We compare two MaskGiT transformers trained atop two tokenizers at the same BPP.

Fully generated images - using OpenMagViT-V2 tokenizer (CFG=10.0)

Fully generated images - using FlowMo-Lo tokenizer (CFG=10.0)

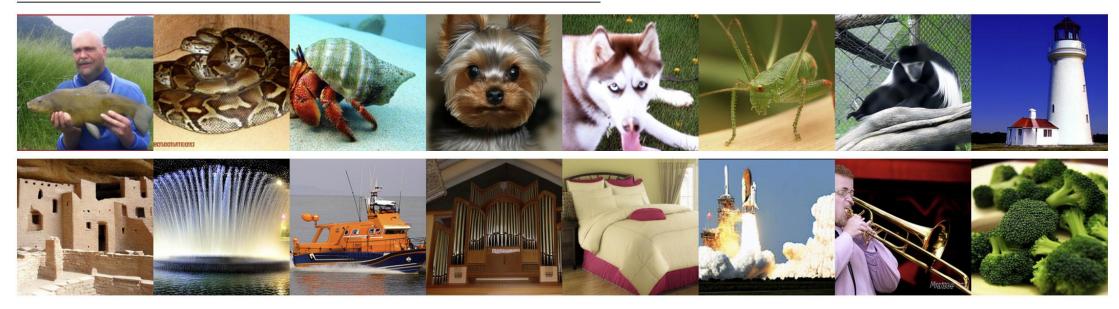


Figure 6. Generated images. Example generated images from MaskGiT trained with different tokenizers. FlowMo can be used to train high-quality second-stage generative models. The corresponding class indices are identical for ease of comparison.

鸟图预警

Perceptual compression

Original image Reconstructed Variance heatmap Figure 8. **Multimodal reconstruction.** After post-training, FlowMo reconstruction remains multimodal, but biased towards preserving the perceptually relevant details of the image, which manifests here by the variance concentrating in the background.

Ablation Study

Model	rFID↓	PSNR ↑	LPIPS↓
FlowMo (fewer params.)	2.87	20.71	0.15
with doubled patch size	6.39	19.94	0.17
with MSE-trained encoder	3.82	21.40	0.15
without perceptual loss	13.86	22.11	0.21
with FSQ quantization	3.14	21.31	0.14
with logit-normal schedule	4.08	16.45	0.21
without shifted sampler	3.42	20.25	0.16
without guidance	3.28	20.67	0.16

Table 4. **Stage 1A Ablation**. Deviating from FlowMo design choices compromises either PSNR or rFID. We prioritize rFID in our model due to its correlation with perceptual quality.

Model	rFID↓	PSNR ↑	LPIPS↓
FlowMo-Lo	1.10	21.38	0.134
FlowMo-Lo (post-trained)	0.95	22.07	0.113
FlowMo-Hi	0.73	24.02	0.086
FlowMo-Hi (post-trained)	0.56	24.93	0.073

Table 5.Stage 1B ablation.Without the post-training stage,performance is considerably worse.

Conclusion

- A 1-D tokenizer with MMDiT encoder / decoder.
- Without adversarial loss or distillation
- SOTA reconstruction performance
- What is Mode Seeking?
- Ineffective decoding
- More exploration about generation is needed

Thanks for your listening!