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UnZipLoRA: Separating Content and Style 

from a Single Image
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Background

How to separate content and style from a single image ?

Content

Style
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Background

For simplicity, let us first consider extracting the content from 3–5 images

Content
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Background

DreamBooth

• Fine-tune a pretrained model 

• For a given image set, label all images  

“a [identifier] [class noun]”

[identifier] is a rare token(e.g., sks)

[class noun] is a class descriptor(e.g., dog)

DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation, arXiv:2208.12242
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Background

DreamBooth

• Add a class-specific prior preservation loss

DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation, arXiv:2208.12242
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Background

SDXL

SDXL: Improving Latent Diffusion Models for High-Resolution Image Synthesis, arXiv:2307.01952

• 3 Down Blocks → 1 Mid Block → 3 Up Blocks

• 2 Attention Blocks at mid-resolution stages

10 Attention Blocks at low-resolution stages 
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Background

Low-Rank Adaptation (LoRA)

LoRA: Low-Rank Adaptation of Large Language Models, arXiv:2106.09685

Pre-trained weight matrix: 𝑊0 ∈ ℝ
𝑑×𝑘

𝐵 ∈ ℝ𝑑×𝑟 , 𝐴 ∈ ℝ𝑟×𝑘 , 𝑟 ≪ min(𝑑, 𝑘)

Low-rank-parametrized update matrices:

𝑊0 + Δ𝑊 = 𝑊0 + 𝐵𝐴, where 

Intrinsic rank 
during adaptation
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Background

B-LoRA

• Can we just optimize a few blocks ?

• B-LoRA finds that

4th Block        captures content

5th Block        captures style

Implicit Style-Content Separation using B-LoRA, arXiv:2403.14572

• We can just optimize 2 blocks using LoRA
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Background

B-LoRA

• Optimizing LoRA weights                  achieves good reconstruction performance           

Implicit Style-Content Separation using B-LoRA, arXiv:2403.14572

Result
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Background

B-LoRA

• Given an input image, we can just finetune LoRA weights

• If we only plug          , we can keep the content and change the style

Implicit Style-Content Separation using B-LoRA, arXiv:2403.14572
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Background

B-LoRA

• Given an input image, we can just finetune LoRA weights

• If we only plug          , we can keep the style and change the content

Implicit Style-Content Separation using B-LoRA, arXiv:2403.14572
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Background

B-LoRA

Implicit Style-Content Separation using B-LoRA, arXiv:2403.14572

• Given 2 input images, we can finetune LoRA weights separately

• Combining LoRA weights from different images can mix content and style
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Background

When we have 2 LoRA weights, can we just merge them ?

Content

Style
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Background

Direct merge obtains bad results, but ZipLoRA obtains better results 

ZipLoRA
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Background

ZipLoRA 

• Given content LoRA and style LoRA

ZipLoRA learns how to merge them 
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Background

ZipLoRA

• Key insight:  Highly aligned LoRA weights merge poorly 

ZipLoRA: Any Subject in Any Style by Effectively Merging LoRAs, arXiv:2311.13600

• “Aligned” means cosine similarity between 

columns of 2 LoRAs are large
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Background

ZipLoRA

• Another key insight: LoRA weight matrices are sparse 

ZipLoRA: Any Subject in Any Style by Effectively Merging LoRAs, arXiv:2311.13600
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Background

ZipLoRA

• Introduce the column-wise scaling factors mc , ms to keep the orthogonality

• We can freeze content LoRA  Lc and style LoRA  Ls

• Learn column-wise scaling factors mc , ms   

ZipLoRA: Any Subject in Any Style by Effectively Merging LoRAs, arXiv:2311.13600
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Background

ZipLoRA

ZipLoRA: Any Subject in Any Style by Effectively Merging LoRAs, arXiv:2311.13600

• Loss: content-style loss +                      

cosine-similarity loss
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Method

UnZipLoRA does the opposite 
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Method

Problem Setup 

• Given a pre-trained diffusion model with weights

Given a single input image

• Learn two models:

• content LoRA

• style LoRA
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Method

Overview: prompt separation, column separation, block separation
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Method

Prompt Separation 
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Method

Prompt Separation 

• Typical cross-attention layer

• Use 3 separate prompts to prevent cross-contamination

where x is “A < c > in < s > style”

xc is < c > (e.g., ‘sks dog’)        xs is < s > (e.g., ‘watercolor painting’)
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Method

Column Separation 
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Method

Recall: ZipLoRA uses column-wise scaling factors 
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Method

Column Separation 

• Introduce the column-wise scaling factors for each LoRA
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Method

Column Separation 

• Add an orthogonal loss to promote compatibility



29

Method

Column Separation 

• UnZipLoRA finds that training a fraction of columns is sufficient

• We can just optimize a set of columns (10% → 20% → 30%)  

hard mask        hard mask 
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Method

Block Separation 
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Method

Recall: B-LoRA finds that certain blocks capture content/style  

Content

Style
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Method

Block Separation 

• In these blocks, all LoRA columns are fully trained without masks
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Method

Inference 
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Experiments

Qualitative Results
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Experiments

Qualitative Results
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Experiments

Qualitative Comparisons
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Experiments

Quantitative Comparison
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Experiments

Ablation Study 
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Experiments

Failure Cases 

• For highly abstract styles, UnZipLoRA may fail to destylize the subject
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Conclusion

• Certain blocks are more responsible for content/style

• Highly aligned LoRA weights merge poorly

• LoRA weight matrices are sparse

• Training a fraction of LoRA weights is sufficient to capture concepts



Thanks for listening!

STRUCT Group Seminar

Presenter: Yixuan Zou

2025.11.30



42

Experiments

Implementation Details

• Dataset: use a set of 40 diverse images collected from previous work

• Experimental setup:

• Base model: SDXL v1.0

• LoRA: rank = 64 using Adam (learning rate = 5e-5) for 600 steps

• Column separation: t = 200, N = 30%, λ = 0.5

• Block separation: use all upsampling blocks
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