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Background : Perceptual Image Restoration

SRCNN SwinIR Restormer
Perceptual o

Image Restoration
Task-oriented

I :e Sto rl I I e r g 4 HXWxC _ | Transformer | HxWxC Transformer | HxWx2C | Transformer |HXWx2C_ joo] HxWx3 -
Fo Block | Block | Fy Block, [~ 7, | R d estored (f)
1L S o HXWxC Refinement
Degraded (I
g (1) v = (b)
(MDTA] Multi-Dconv Head = o E
-Transposed Attention Transformer HxWxac xS
o
Gated Dconv Block X . =
Feed-Forward Network xLo i E H"Wﬂg X
|
[Norm JLayer Normalization =< & § a_;
< &
Eg‘m Depth-wise Convolution Skip Connections ol
* Downsample v @)
a
A Upsample Tragie.folr(mer Bxfac Tragie.folr(mer EI o % Q. fvind
Wi iti oc oc —®T
% Element-wise Addition xL xL3 0 Transposed-Atiention
Element-wise Multiplication Map (A)
Y =K
® Matrix Multiplication L = E |g § ¥ NXNXC
. FixWxC
© Concatenation l
® Reshape TraglsfoLmer ! o % ¥y X
oc >< D—
@ GELU Activation gxgxec xLg “8 CxCxN

(N=HxW)



T 0\ - \
Je * 4. ,é]
598 PEKING UNIVERSITY

Background : Perceptual Image Restoration
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Background : Task-oriented Image Restoration

Perceptual
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Fig. 1. Overall architecture of URIE. The Selective Enhancement Modules (SEM) are
indicated by gray rectangles. Details of these modules are illustrated in Fig. 2.
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Fig. 2. Details of SEM. @ and ® indicate element-wise summation and multiplication
between feature maps, respectively.
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Background : Diffusion Prior
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Background : Diffusion Prior
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Figure 3. The two-stage pipeline of DiffBIR. 1) Restoration Module (RM) for degradation removal; 2) Generation Module (GM) for realistic
image reconstruction with optional region-adaptive restoration guidance for a trade-off between quality and fidelity.
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Figure 2. Overview of UniRestore. UniRestore augments the diffusion model by incorporating CFRMs and TFAs within the pre-trained
autoencoder. The training process is divided into two stages: In the first stage, CFRM, Controller, and SC-Tuner are trained to restore clear
encoder and latent features. In the second stage, the TFA is trained to adapt the restored encoder features and latent features for various
downstream tasks. using task-specific prompts at the decoder to control the output restoration.
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Stage1: CFRM
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Stage1.5: Controller & SC-Tuner
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Stage1.5: Controller & SC-Tuner
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Stage2: TFA
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Experiments

TIR methods: DIP . URIE
PIR methods: NAFNet . PromptIR
Diffusion-based approaches: DiffBIR . DiffUIR

Two settings
#1 Original objective:
Trained only for their intended purpose, denoted as “method”.
#2 UniRestore:
Trained on the PIR training set and then fine-tuned on multiple downstream

tasks, as “method™*”.
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Experiments ATEIT SR

PIR Training Datasets:
* a blend of the DIV2K , Flickr2K , and OST datasets

PIR Testing Datasets:

« seen: test set of DIV2K

 unseen: Rain100L, RESIDE, UHDSnow, GoPro,
‘Noise’ comprising Urban100, BSD68, CBSD68, Kodak,
McMaster, Set12

PIR Evaluation:

 PSNR & SSIM
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PIR Performance

Seen Dataset Unseen Datasets Averave

Nothods DIV2K [1] Rain100L [67] | RESIDE [26] | UHDSnow [59] | Noise [20, 37] | GoPro [38] aE
| PSNR1 SSIMt | PSNRt SSIM?1 | PSNRT SSIMt | PSNRT SSIM7T | PSNRT SSIMT [ PSNRt SSIM?t | PSNRT SSIM?T
DIP [34] 18.47  0.5810 2265 0.7884 21.30  0.7819 19.03  0.8089 15.41 0.2494 23.08 0.8041 17.13  0.5734
DIP* |34] 18.62  0.5516 23.16  0.8097 19.83  0.7586 16.77  0.7830 14.51 0.2328 21.05 0.7624 16.28  0.5569
URIE [52] 17.72  0.5202 20.97 0.7293 18.30 0.7449 18.11 0.7626 18.57 0.5180 19.21 0.5683 18.81 0.6406
URIE* [52] 1798  0.5967 1997  0.6993 20.37  0.7694 16.18  0.7526 17.41 0.3624 18.57 0.4624 18.41 0.6071
NAFNet |2] 2223  0.7905 24.57 0.8178 25.13  0.8632 20.71 0.8672 2322  0.6951 22.18 0.8042 23.01 0.8063
NAFNet* [2] 19.81 0.7005 20.51 0.7314 21.24 08178 18.39  0.7958 20.38  0.6019 19.79  0.7293 20.02 0.7295

PromptIR [42] 2390 0.8321 | 28.17 09034 | 27.26 0.8957 | 22.10 0.8877 | 23.72 0.7269 | 2393 0.8221 | 24.85 0.8447
PromptIR* [42] | 2194 0.7421 | 2476 08134 | 24.16 08317 | 19.13 0.8265 | 19.68 0.6283 | 20.18 0.7657 | 21.64 0.7680

DiffBIR [33] 2276 0.8053 | 27.25 0.8695 | 2697 08770 | 20.84 0.8785 | 23.67 0.7661 | 2349 0.8076 | 24.16 0.8340
DiffBIR* [33] 1832 0.6847 | 2348 0.8143 | 23.13 08068 | 18.29 0.8167 | 21.59 0.6419 | 20.13 0.7413 | 20.82 0.7510
DiffUIR [77] 2379 0.8397 | 2825 09154 | 27.12 0.8820 [ 20.74 0.8753 | 24.27 0.7481 | 2393 0.8241 | 24.68 0.8474
DiffUIR* [77] 2147 07742 | 2544 08276 | 2358 08174 | 1862 08318 | 2276 0.6691 | 21.71 0.7649 | 2226 0.7808
UniRestore 2432 0.8434 | 30.02 09237 | 2791 09043 | 2344 0.8943 | 2437 0.7811 | 2594 0.8541 | 26.00 0.8668

Table 1. Performance comparison of existing methods on one seen and five unseen PIR datasets.

TIR PIR Diffusion-based 30
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Experiments

PIR Performance

URIE PromptIR DiffUIR UniRestore
TIR PIR Diffusion-based
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Experiments

TIR Training Datasets:

 image classification (randomly select 80,000 images from ImageNet )
« semantic segmentation (Cityscapes datasets)
 synthesized with 15 types of degradation

TIR Testing Datasets:

» seen. test set of ImageNet, Cityscapes
« unseen: CUB, ACDC

TIR Evaluation:

 image classification (ACC)

« semantic segmentation (mloU)
33
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TIR Performance

TIR for image classification. TIR for semantic segmentation.
Seen Dataset Unseen Dataset Seen Dataset Unseen Dataset

Inputs ImageNet [12] CUB [56] Inputs Cityscapes [47] [FoggyCityscapes [47]] ACDC [48]

| ResNet-50 [15] + ViT-B [14] 1 |ResNet-50 [15] T ViT-B [14] 1 DeepLabv3+ [3] RefineNet-lw [39]| RefineNet-lw [39] |RefineNet-lw [39]
LQ 51.75 67.65 3.§ {EQ_ o :4{.@3_ o LQ 40.36 40.75 65.20 28.30
DIP[34 | 6155 7205 | @ < 47.91 54.10 DIP[34] | 5717 5767 | 6781 | 38.19
DIP* [34] 59.80 70.35 45.99 52.48 DIP* [34] 51.81 50.35 67.16 32.98
URIE [52] 66.65 73.95 49.64 57.24 URIE [52] 55.88 51.45 65.93 37.90
URIE* [52] 65.20 72.15 46.89 54.93 URIE* [52] 50.56 48.23 65.93 32.71
NAFNet [2] 60.35 70.80 46.47 53.82 NAFNet [2] 58.41 58.19 66.06 37.59
NAFNet* [2] 57.65 68.25 43.17 51.88 NAFNet* [2] 51.91 53.29 65.40 36.03
PromptIR [42] 65.25 73.90 49.52 58.04 PromptIR [42] 58.05 57.54 66.76 37.86
PromptIR* [42] 64.05 73.00 48.52 57.39 PromptIR* [42] 54.67 52.25 63.44 35.51
DiffBIR [33] 59.30 68.05 41.68 52.38 DiffBIR [33] 52.49 53.68 66.29 36.28
DiffBIR* [33] 57.55 66.85 40.65 51.34 DiffBIR* [33] 48.90 48.56 63.26 33.12
DiffUIR [77] 62.35 72.10 46.75 57.28 DiffUIR [77] 51.28 51.46 66.24 35.78
DiffUIR* [77] 61.15 71.60 45.44 56.31 DiffUIR* [77] 47.92 45.01 62.82 34.83
UniRestore 7165 7705 | 5370 60.79  UniRestore 66.05 65.73 70.77 39.27
HQ | 7280 78.70 58.22 64.41 HO | 756e 7566 | 7566 | -

TIR PIR Diffusion-based 4
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TIR Performance : Classification
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TIR Performance : Segmentation

LQ URIE PromptIR  UniRestore HQ
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TIR Performance : Segmentation

LQ URIE PromptIR  UniRestore HQ
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Ablation Study
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Effectiveness of Proposed Modules

PIR Cls Seg
PSNRT ACCT mloU?

Baseline 19.35 57.65 46.76
UniRestore w/o CFRM | 21.43 63.10 55.48
UniRestore w/o TFA 22.16 64.25 58.13
UniRestore 24.32 71.65 66.05

Methods

Input UniRestore w/o Diffusion UniRestore
39
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Investigation of TFA

| : e e PIR Cls Seg
Methods # of Tuned Parameters PSNR1 ACCt mioU 1
Multiple Adapters 65.17M 23.06 68.95 64.64
Multiple TFAs 63.03M 25.48 71.20 65.78
UniRestore-SP 21.0I1M 23.9] 70.05 64.99
UniRestore 21.03M 24.32 71.65 66.05

(i) Multiple Adapters: concatenates the output of the denoising U-Net with the restored features
from CFRM and processes them through the same number of convolutional blocks as in TFA

(if) Multiple TFAs: optimizes each task with its own TFA

(ifi) UniRestore-SP: employs a single TFA with a single prompt for all tasks

(iv) UniRestore: utilizes one TFA with specific prompts for each task

40



Ablation Study

Extendability Evaluation

an additional downstream task—object detection

based on the model trained for PIR, image classification,
and semantic segmentation

update only with a new learnable prompt, optimizing it
using the object detection loss

Method | LQ DIP [34] PromptIR [42] UniRestore
mAP 1 | 45.63 54.29 50.61 58.06

existing methods that require retraining models on complete

task datasets

S N »
NPT TS

PEKING UNIVERSITY
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Takeaway

» UniRestore, an approach capable of addressing PIR and TIR
simultaneously.

» Adapting diffusion features for diverse applications.

« Complementary feature restoration module that restores
features within the encoder. (inter & intra group)

 Task feature adapter that dynamically and efficiently combines
these restored features with diffusion features for downstream
tasks. (LSTM)

42
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