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Background

Video Editing
- Video to video translation

- Motion patterns are established by source videos
| ]

Shuai Yang, Yifan Zhou, Ziwei Liu, and Chen Change Loy. "FRESCO: Spatial-Temporal Correspondence for
Zero-Shot Video Translation", CVPR’24.



Background

Image Animation
- Given an image + motion conditions (optional, e.g. trajectory, text, ...)
- Create new motion patterns: object & camera




Background

How to represent a motion”?

- Optical Flow
- Definition:
- Offset between keyframe and i-th frame: .
- Update new frame with: = 4+ 4.
- Challenges:

- Hard to perform long-term temporal consistency
- pixel incompletion under huge motion
- Ill-posed prediction

- rigid for camera pose motion
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Background

Motion-12V: two-stage optical flow-based generation

- Expensive data curation and training cost

Stagel: Explicit Motion Generation
Timestep —*

Stage 2: Motion-Guided 12V
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“Motion-12V: Consistent and Controllable Image-to-Video Generation with Explicit Motion Modeling”,
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Background

How to represent a motion”?

- Spectral Volume
- Definition: frequencies modeled of optical flow
- Offsets{ o } 4 *2% % s too huge to handle

- = {o-1=1)

- Discard high-freq. parts

- Low-freq. covers natural motions basically
- Benefits: lightweight and practical representation to generate
- Challenges: still rigid for camera pose motion



Background

Generative Image Dynamics

- Collect 3,015 motion videos with natural periodic vibrations.
- Use Latent Diffusion Models (LDM) to generate spectrum volumes
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Generative Image Dynamics, Zhengqi Li Richard Tucker Noah Snavely Aleksander Holynski,

CVPR’24 best paper



Background

How to represent a camera motion?
- Camera: map 3D coordinates ( , , ) to 2D points ( ', ")
- Intrinsic/Extrinsic parameter: linear transformation matrices




Background

Intrinsic parameter:map (, , )to '( , )
- Pinhole camera with focal length

- Geometry relationship: - = —, - = —
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Background

Intrinsic parameter:

Basic mapping from 3D to 2D: - = —', =

2D plane coordinates offset
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Background

Intrinsic parameter:

- Basic mapping from 3D to 2D: - = —, - = —

- 2D plane coordinates offset |

- Non-square 2D pixels:
- indicates pixel numbers along x-/y- axis



Background

Intrinsic parameter: internal properties of camera itself
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Background

Extrinsic parameter
- A set of rotation and translation matrices

1 0 0
R (x)=|0 cosa -sma

0 sma cosa

cosff 0 smp
R.(B)=| O 1 0
—sm f# 0 cosf

cosy —smy 0
R(y)=|smy cosy 0

0 0 1




Background

Extrinsic parameter

- Degrees of freedom: 6
- 3 (rotation angles) + 3 (move along axes)

1 0 0
R (a)=|0 cosa -sma

0 sma cosa

cosf 0 smp
R,(B)=| O 1 0
—sm ff 0 cospf

cosy —=smy 0
R (y)=|smy cosy O

0 0 1



Background

MotionCitrl
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“MotionCtrl: A Unified and Flexible Motion Controller for Video Generation”, Zhouxia Wang et al.,
SIGGRAPH24



Background

rajectoryAttention

- Extract trajectory as motion guidance across frames

Trajectory Extraction

“Trajectory attention for fine-grained video motion control”, Zeqi Xiao, Wengi Ouyang, Yifan Zhou,
Shuai Yang, Lei Yang, Jianlou Si, and Xingang Pan, under submission of ICLR’25, score: 6,6,6,8,8



Background

rajectoryAttention

- Explicit cross-frame regularization with trajectory guidance
- Cross-frame attention across points along the trajectories

Trajectory
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“Trajectory attention for fine-grained video motion control”, Zeqi Xiao, Wengi Ouyang, Yifan Zhou,
Shuai Yang, Lei Yang, Jianlou Si, and Xingang Pan, under submission of ICLR’25, score: 6,6,6,8,8



Background

rajectoryAttention

- Re-arranged temporal attention
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“Trajectory attention for fine-grained video motion control”, Zeqi Xiao, Wengi Ouyang, Yifan Zhou,
Shuai Yang, Lei Yang, Jianlou Si, and Xingang Pan, under submission of ICLR’25, score: 6,6,6,8,8



Background

rajectoryAttention

- Applied as an auxiliary residual branch
- Stabilize training from the beginning

Temporal ey
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“Trajectory attention for fine-grained video motion control”, Zeqi Xiao, Wengi Ouyang, Yifan Zhou,
Shuai Yang, Lei Yang, Jianlou Si, and Xingang Pan, under submission of ICLR’25, score: 6,6,6,8,8



Background

rajectoryAttention

- Optical flows for training
- Motion trajectory extracted from camera explicit parameters for testing

Algorithm 3: Trajectory extraction from single image

Input: Image | c REHpXWpX3 A got of camera nose with intrinsic and extrinsic
parameters,{K € R>*?} and {E[R;t]}, where R € R?*? representations the rotatio:;]

part of the extrinsic parameters, and t € R3*! is the translation part. The length of th

camera pose equals frame number F'. H, and W), are the height and width of the pixel

space

Estimate the depth map D € R¥»*W»r from I given camera pose parameters.

2| Get the translation of pixels T € R XH»*WsX2 haged on I using using D, K, and E.

Get trajecories Tr = T + C, where C € R <" »*Z s pixel-level grid coordinates of image
with shape H, x W,

4 Get valid trajectory mask M for pixels that within the image space.

Output: Trajectories Tr, Trajectory Masks M
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Background

How to represent a camera motion?

- A great effort for large scale clean camera extrinsic parameters
- An intermediate perspective: 3D reconstruction

"zoom out, landscape"

Control signals
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Background

How to find a better 3D representation?

- 12VControl-Camera: Point cloud
- Estimate depth maps from 2D video: narrow the gap between 2D and 3D

- Drawback: only handle camera motion, not object motions
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ﬁ . ? Camera
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Input Image Point Cloud Point Trajectory

“12VControl-Camera: Precise Video Camera Control with Adjustable Motion Strength”, Wanquan

Feng, et al., under submission of ICLR’25, score: 6,6,6,8 23



Background

How to find a better 3D representation?

- 12VControl: separated point clouds with human priors
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“12VControl: Disentangled and Unified Video Motion Synthesis Control”, Wanquan Feng et al, arXiv 24.11
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Background

12\ Control

- Borderland: background with minor motions

- Drag units:
- controlled by rotations and translations

- camera motions

25



Background

12V Control

- Borderland
- Drag units
- Brush units: controlled by a motion strength scaler

26



Outline

Background
Method

Experiments

Conclusion



Method

Perception-as-control

- Approximation of 3D world can support motion generation
- Camera motion: extrinsic camera parameters sequence
- Object motion: 3D sphere tracking

Data Curation
Visual Odometry Camera Control Signals
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Method

Camera motion

- Coarse estimation of camera extrinsic sequences { } -1,

- Pre-defined intrinsic parameters
- Off-the-shelf toolbox: TartanVO [PMLR’21]
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Method

Object motion

- Simplify 3D objects to unit spheres with adjustable grid points
- 3D point tracking = 2D point tracking & depth estimation
- Off-the-shelf toolbox: SpaTracker [CVPR'24]
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Method

Training strategy: 3 stage

Condition-specific encoder

- Image, camera poses, object points
Stage1: camera motion insertion
Stage2: collaborative motion

Stage3d: dense-to-sparse fine-tune

- For fine-grained control

- Randomly sample points from

long object motion trajectories
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Method

Dataset

- Source:
- RealEstate10K: with annotated camera intrinsic and explicit parameters

- WebVid10M: large-scale in-the-wild motion video clips
- Filtering:
- Estimate optical flow by RAFT [ECCV’20]

-  Compute F-Norm, discard small motion ones.

- Final: 6k with camera labels + 35k clips with rich scenes
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Experiments

Camera motions
- Regular move

- Arbitrary move

https://chen-yingjie.github.io/projects/Perception-as-Control/

34


https://chen-yingjie.github.io/projects/Perception-as-Control/

Experiments

Regular move

https://chen-yingjie.github.io/projects/Perception-as-Control/ .



https://chen-yingjie.github.io/projects/Perception-as-Control/

Experiments

Arbitrary move

https://chen-yingjie.github.io/projects/Perception-as-Control/ -


https://chen-yingjie.github.io/projects/Perception-as-Control/

Experiments

Object motions
- Fine-grained control

https://chen-yingjie.github.io/projects/Perception-as-Control/



https://chen-yingjie.github.io/projects/Perception-as-Control/

Experiments

Collaborative motions

https://chen-yingjie.github.io/projects/Perception-as-Control/ 28



https://chen-yingjie.github.io/projects/Perception-as-Control/

Experiments

Further Applications: background motion control
- Even foreground is not static

https://chen-yingjie.github.io/projects/Perception-as-Control/
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https://chen-yingjie.github.io/projects/Perception-as-Control/

Experiments

Further Applications: background motion control
- Even foreground is not static

https://chen-yingjie.github.io/projects/Perception-as-Control/
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Conclusion

* Overview of camera basics
* An effective image animation method based on coarse 3D envelop
» Potential trending topics beyond video editing

* Potential applications to more low-/high-level tasks
* Novel view synthesis, Multi-view understanding, ...



Thanks for listening!



Conclusion: Potential Extension

Camera Skewness inside Intrinsic Matrix
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