Perception-as-Control: Fine-grained Controllable Image Animation with 3D-aware Motion Representation

Yingjie Chen, Yifang Men, Yuan Yao, Miaomiao Cui, Liefeng Bo

arXiv 25.01

STRUCT Group Seminar Presenter: Yifan Li 2025.1.19

Outline

- Background
- Method
- Experiments
- Conclusion

Video Editing

- Video to video translation
- Motion patterns are established by source videos

Shuai Yang, Yifan Zhou, Ziwei Liu, and Chen Change Loy. "FRESCO: Spatial-Temporal Correspondence for Zero-Shot Video Translation", CVPR'24.

Image Animation

- Given an image + motion conditions (optional, e.g. trajectory, text, ...)
- Create new motion patterns: object & camera

How to represent a motion?

- Optical Flow
 - Definition:
 - Offset between keyframe and i-th frame: $f_{0 \rightarrow i} \in \mathbb{R}^{2 \times h \times w}$
 - Update new frame with: $\mathbf{p}_i = \mathbf{p}_0 + f_{0 \rightarrow i}$
 - Challenges:
 - Hard to perform long-term temporal consistency
 - pixel incompletion under huge motion
 - ill-posed prediction
 - rigid for camera pose motion

Motion-I2V: two-stage optical flow-based generation

- Expensive data curation and training cost

"Motion-I2V: Consistent and Controllable Image-to-Video Generation with Explicit Motion Modeling", Xiaoyu Shi, Zhaoyang Huang, et al., SIGGRAPH'24 How to represent a motion?

- Spectral Volume S
 - Definition: **frequencies modeled** of optical flow
 - Offsets $\{f_{0 \to i}\}_{i=1}^T \in \mathbb{R}^{T \times 2 \times h \times w}$ is too huge to handle
 - $S = FFT(\{f_{0\to i}\}_{i=1}^T)$
 - Discard high-freq. parts
 - Low-freq. covers natural motions basically
 - Benefits: lightweight and practical representation to generate
 - Challenges: still rigid for camera pose motion

Generative Image Dynamics

- Collect 3,015 motion videos with natural periodic vibrations.
- Use Latent Diffusion Models (LDM) to generate spectrum volumes

Generative Image Dynamics, Zhengqi Li Richard Tucker Noah Snavely Aleksander Holynski, CVPR'24 best paper

How to represent a **camera** motion?

- Camera: map 3D coordinates (x, y, z) to 2D points (x', y')
 - Intrinsic/Extrinsic parameter: linear transformation matrices

Intrinsic parameter: map P(x, y, z) to P'(x', y')

- Pinhole camera with focal length f
- Geometry relationship: $\frac{x}{z} = \frac{x'}{f}, \frac{y}{z} = \frac{y'}{f}$

Intrinsic parameter:

- Basic mapping from 3D to 2D: $\frac{x}{z} = \frac{x'}{f}, \frac{y}{z} = \frac{y'}{f}$
- 2D plane coordinates offset c_x , c_y

Intrinsic parameter:

- Basic mapping from 3D to 2D: $\frac{x}{z} = \frac{x'}{f}, \frac{y}{z} = \frac{y'}{f}$
- 2D plane coordinates offset c_x , c_y
- Non-square 2D pixels:
 - α , β indicates pixel numbers along x-/y- axis

$$(x, y, z) \rightarrow (f k \frac{x}{z} + c_x, f l \frac{y}{z} + c_y)$$

 $\alpha \beta^{x}$

Intrinsic parameter: internal properties of camera itself

- c_x , c_y , α , β

$$P_{h}' = \begin{bmatrix} \alpha \ x + c_{x}z \\ \beta \ y + c_{y}z \\ z \end{bmatrix} = \begin{bmatrix} \alpha \ 0 \ c_{x} \ 0 \\ 0 \ \beta \ c_{y} \ 0 \\ 0 \ 0 \ 1 \ 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Intrinsic Matrix

Extrinsic parameter

- A set of rotation and translation matrices

Extrinsic parameter

- Degrees of freedom: 6
 - 3 (rotation angles) + 3 (move along axes)

MotionCtrl

- directly repeat extrinsic camera parameters to feature size as control signals $R: 3 \times 3, T: 3 \times 1$

"MotionCtrl: A Unified and Flexible Motion Controller for Video Generation", Zhouxia Wang et al., SIGGRAPH'24

TrajectoryAttention

- Extract trajectory as motion guidance across frames

TrajectoryAttention

- Explicit cross-frame regularization with trajectory guidance
- Cross-frame attention across points along the trajectories

TrajectoryAttention

- Re-arranged temporal attention

TrajectoryAttention

- Applied as an auxiliary residual branch
- Stabilize training from the beginning

TrajectoryAttention

- Optical flows for training
- Motion trajectory extracted from camera explicit parameters for testing

Algorithm 3: Trajectory extraction from single image

Input: Image $\mathbf{I} \in \mathbb{R}^{H_p \times W_p \times 3}$ A set of camera pose with intrinsic and extrinsic

- parameters, $\{\mathbf{K} \in \mathbb{R}^{3 \times 3}\}\$ and $\{\mathbf{E}[\mathbf{R}; \mathbf{t}]\}\$, where $\mathbf{R} \in \mathbb{R}^{3 \times 3}$ representations the rotation part of the extrinsic parameters, and $\mathbf{t} \in \mathbb{R}^{3 \times 1}$ is the translation part. The length of the camera pose equals frame number F. H_p and W_p are the height and width of the pixel space
- ¹ Estimate the depth map $\mathbf{D} \in \mathbb{R}^{H_p \times W_p}$ from **I** given camera pose parameters.
- ² Get the translation of pixels $\mathbf{T} \in \mathbb{R}^{F \times H_p \times W_p \times 2}$ based on **I** using using **D**, **K**, and **E**.
- ³ Get trajecories $\mathbf{Tr} = \mathbf{T} + \mathbf{C}$, where $\mathbf{C} \in \mathbb{R}^{H_p \times W_p \times 2}$ is pixel-level grid coordinates of image with shape $H_p \times W_p$.
- ⁴ Get valid trajectory mask **M** for pixels that within the image space. **Output:** Trajectories **Tr**, Trajectory Masks **M**

How to represent a camera motion?

- A great effort for large scale clean camera extrinsic parameters
- An intermediate perspective: 3D reconstruction

How to find a better 3D representation?

- I2VControl-Camera: Point cloud
 - Estimate depth maps from 2D video: narrow the gap between 2D and 3D
- Drawback: only handle camera motion, not object motions

"I2VControl-Camera: Precise Video Camera Control with Adjustable Motion Strength", Wanquan Feng, et al., under submission of ICLR'25, score: 6,6,6,8

How to find a better 3D representation?

- I2VControl: separated point clouds with human priors

"I2VControl: Disentangled and Unified Video Motion Synthesis Control", Wanquan Feng et al, arXiv 24.11

I2VControl

- Borderland: background with minor motions
- Drag units:
 - controlled by rotations and translations
 - camera motions

I2VControl

- Borderland
- Drag units
- Brush units: controlled by a motion strength scaler

Outline

- Background
- Method
- Experiments
- Conclusion

Perception-as-control

- Approximation of 3D world can support motion generation
 - Camera motion: extrinsic camera parameters sequence
 - Object motion: 3D sphere tracking

Camera motion

- Coarse estimation of camera extrinsic sequences $\{E_i\}_{i=1}^T$, $E_i = R_i T_i$
- Pre-defined intrinsic parameters
- Off-the-shelf toolbox: TartanVO [PMLR'21]

Object motion

- Simplify 3D objects to **unit spheres** with adjustable grid points
- 3D point tracking \rightarrow 2D point tracking & depth estimation
- Off-the-shelf toolbox: SpaTracker [CVPR'24]

Training strategy: 3 stage

- Condition-specific encoder
 - image, camera poses, object points
- Stage1: camera motion insertion
- Stage2: collaborative motion
- Stage3: dense-to-sparse fine-tune
 - For fine-grained control
 - Randomly sample points from long object motion trajectories

Dataset

- Source:
 - RealEstate10K: with annotated camera intrinsic and explicit parameters
 - WebVid10M: large-scale in-the-wild motion video clips
- Filtering:
 - Estimate optical flow by RAFT [ECCV'20]
 - Compute F-Norm, discard small motion ones.
- Final: 6k with camera labels + 35k clips with rich scenes

Outline

- Background
- Method
- Experiments
- Conclusion

Camera motions

- Regular move
- Arbitrary move

Regular move

Arbitrary move

Object motions

- Fine-grained control

Collaborative motions

- Further Applications: background motion control
- Even foreground is not static

- Further Applications: background motion control
- Even foreground is not static

Outline

- Background
- Method
- Experiments
- Conclusion

Conclusion

- Overview of camera basics
- An effective image animation method based on coarse 3D envelop
- Potential trending topics beyond video editing
- Potential applications to more low-/high-level tasks
 - Novel view synthesis, Multi-view understanding, ...

Thanks for listening!

Conclusion: Potential Extension

Camera Skewness inside Intrinsic Matrix

