REPA-E: Unlocking VAE for End-to-End Tuning with Latent Diffusion

Transformers

Xingjian LengJaskirat SinghYunzhong HouAustralian National University

Saining Xie

Zhenchang Xing Data61 CSIRO

New York University

Liang Zheng Australian National University

> 2025.5.25 Presenter:唐果

- Author
- Background
- Method
- Experiments

- Confines diffusion model training to a fixed latent space
- Interact between AE & LDM
- REPA^[1] align early-layer features of DiT with clean image features from pre-trained vision encoders

Insights

- High-frequency noise in AE
- Scale equivariance: a simple regularization

Blockwise 2D DCT

- Autoencoder is different from RGB
- Bigger channel has higher frequencies

Spectral Analysis

Figure 6. Denoising trajectories (steps 1, 16, 32, 128 and 256 out of 256) for DiT-XL trained with FluxAE (top) and FluxAE+SE. DiT-XL with vanilla FluxAE exhibits prominent high-frequency artifacts early on in the trajectory.

Scale Equivariance Regularization

- ×2 4 bilinear downsampling \tilde{x}
- Removes high-frequency & remain low-frequency

$$\mathcal{L}(x) = d(x, \operatorname{Dec}(z)) + \alpha d(\tilde{x}, \operatorname{Dec}(\tilde{z})) + \beta \mathcal{L}_{\mathrm{KL}}$$

Insights

- Lack semantic-preserving in AE
- Equivariance Regularization: a simple regularization

Semantic-preserving

EQ-VAE

- Spatial Transformation $\tau \circ \mathbf{X}$
- Equivariance $\mathcal{E}(\tau \circ \mathbf{x}) = \tau \circ \mathcal{E}(\mathbf{x})$

$$\mathcal{L}_{\text{explicit}}(\mathbf{x}) = \| \tau \circ \mathcal{E}(\mathbf{x}) - \mathcal{E}(\tau \circ \mathbf{x}) \|_2^2$$

Equivariance Regularization

Motivation

- Uneven distribution of potential features in AE
- Contradiction between reconstruction and generation

Vision Foundation model alignment loss

Marginal Cosine Similarity Loss

Image latents Z & foundational visual representations F

Z' = WZ

$$\mathcal{L}_{\text{mcos}} = \frac{1}{h \times w} \sum_{i=1}^{h} \sum_{j=1}^{w} \text{ReLU} \left(1 - m_1 - \frac{z'_{ij} \cdot f_{ij}}{\|z'_{ij}\| \|f_{ij}\|} \right)$$

Marginal Distance Matrix Similarity Loss

• Reduce relative distribution distance

$$\mathcal{L}_{\text{mdms}} = \frac{1}{N^2} \sum_{i,j} \text{ReLU} \left(\left| \frac{z_i \cdot z_j}{\|z_i\| \|z_j\|} - \frac{f_i \cdot f_j}{\|f_i\| \|f_j\|} \right| - m_2 \right)$$

Adaptive Weighting

• Ensuring similar impacts on model optimization

$$w_{\text{adaptive}} = \frac{\|\nabla L_{\text{rec}}\|}{\|\nabla L_{\text{vf}}\|}$$

$$\mathcal{L}_{\rm vf} = w_{\rm hyper} * w_{\rm adaptive} (\mathcal{L}_{\rm mcos} + \mathcal{L}_{\rm mdms})$$

- Recent works fintune the VAE to improve the equivariance
- Jointly tune both VAE and LDM in an end-to-end manner
- End-to-end training can lead to increased performance

Naive End-to-End Tuning is Ineffective

Simpler latent-space

Training Strategy	Spatial Variance	Total Variation
w/o E2E Tuning	17.06	6627.35
E2E w/ REPA Loss	18.02	5516.14
E2E w/ Diff. Loss	0.02	89.80

• Reduced generation performance

(a) PCA Visualization of Latent Spaces

Method

CKNNA scores

• High CKNNA, better generation

• Optimize CKNNA score(REPA loss)

(b) Correlation: gFID & CKNNA Score

Representation Alignment is Bottlenecked by VAE

Frozen VAE has limitation

Batch-Norm Layer for VAE Latent Normalization

- From precomputed latent statistics(1/0.1825 for SD-VAE) to
- A new batch-norm layer

End-to-End Representation-Alignment Loss

• DiT hidden state gets projection

$$\mathcal{L}_{\text{REPA}}(\theta, \phi, \omega) = -\mathbb{E}_{\mathbf{x}, \epsilon, t} \left[\frac{1}{N} \sum_{n=1}^{N} \sin(\mathbf{y}^{[n]}, h_{\omega}(\mathbf{h}_{t}^{[n]})) \right]$$

Overall Training

$$\mathcal{L}(\theta, \phi, \omega) = \mathcal{L}_{\text{DIFF}}(\theta) + \lambda \mathcal{L}_{\text{REPA}}(\theta, \phi, \omega) + \eta \mathcal{L}_{\text{REG}}(\phi)$$
$$\lambda_{\text{REPA}_g} = 0.5 \qquad \qquad \lambda_{\text{REPA}_v} = 1.5$$

04 Experiments

Significantly improve generation performance and

training chood	12 <u>0</u>									
training speed	Method	Tokenizer	Epochs	gFID↓	sFID↓	IS↑				
	Without End-to-End Tuning									
	MaskDiT [55]		1600	5.69	10.34	177.9				
	DiT [34]	CD VAE	1400	9.62	6.85	121.5				
	SiT [30]	SD-VAE	1400	8.61	6.32	131.7				
	FasterDiT [50]		400	7.91	5.45	131.3				
			20	19.40	6.06	67.4				
		CD VAE	40	11.10	6.06	67.4				
	KEFA [JJ]	SD-VAE	80	7.90	5.06	122.6				
			800	5.90	5.73	157.8				
	V	Vith End-to-	End Tuni	ng (Ours	s)					
			20	12.83	5.04	88.8				
	REPA-E	SD-VAE*	40	7.17	4.39	123.7				
			80	4.07	4.60	<u>161.8</u>				

Significantly improve generation performance and training speed

Method	Tokenizer	Epochs	gFID↓	sFID↓	IS↑							
Without End-to-End Tuning												
MaskDiT [55]		1600	5.69	10.34	177.9							
DiT [34]	SD WAE	1400	9.62	6.85	121.5							
SiT [30]	SD-VAE	1400	8.61	6.32	131.7							
FasterDiT [50]		400	7.91	5.45	131.3							
		20	19.40	6.06	<u>67.4</u>							
	SD-VAE	40	11.10	6.06	67.4							
KEPA [33]		80	7.90	5.06	122.6							
		800	5.90	5.73	157.8							
With End-to-End Tuning (Ours)												
		20	12.83	5.04	88.8							
REPA-E	SD-VAE*	40	7.17	4.39	123.7							
		80	4.07	4.60	161.8							

						Target Repr.	gFID↓	sFID↓	IS↑	Prec. ↑	Rec.↑
Diff. Model	gFID↓	sFID↓	IS↑	Prec.↑	Rec.↑	I-JEPA-H [2]	23.0	5.81	60.3	0.62	0.60
SiT-B (130M)	49.5	7.00	27.5	0.46	0.59	+REPA-E (Ours)	16.5	5.18	73.6	0.68	0.60
+REPA-E (Ours)	34.8	6.31	39.1	0.57	0.59	CLIP-L [37]	29.2	5.98	<u>46.4</u>	0.59	0.61
SiT-L (458M)	24.1	6.25	55.7	0.62	0.60	+REPA-E (Ours)	23.4	6.44	57.1	0.62	0.60
+REPA-E (Ours)	16.3	5.69	75.0	0.68	0.60	DINOv2-B [33]	24.1	6.25	55.7	0.62	0.60
SiT-XL (675M)	19.4	6.06	67.4	0.64	0.61	+REPA-E (Ours)	16.3	5.69	75.0	0.68	0.60
+REPA-E (Ours)	12.8	5.04	88.8	0.71	0.58	DINOv2-L [33]	23.3	5.89	59.9	0.61	0.60
						+REPA-E (Ours)	16.0	5.59	77.7	0.68	0.58

Autoencoder	gFID↓	sFID↓	IS↑	Prec.↑	Rec. ↑	Aln. Depth	gFID↓	sFID↓	IS↑	Prec. [↑]	Rec. ↑
SD-VAE [39]	24.1	6.25	55.7	0.62	0.60	6th layer	23.0	5.72	59.2	0.62	0.60
+REPA-E (Ours)	16.3	5.69	75.0	0.68	0.60	+REPA-E (Ours)	16.4	6.64	74.3	0.67	0.59
IN-VAE (f16d32)	22.7	5.47	56.0	0.62	0.62	8th layer	24.1	6.25	55.7	0.62	0.60
+REPA-E (Ours)	12.7	5.57	84.0	0.69	0.62	+REPA-E (Ours)	16.3	5.69	75.0	0.68	0.60
VA-VAE [49]	12.8	6.47	83.8	0.71	0.58	10th layer	23.7	5.91	56.9	0.62	0.60
+REPA-E (Ours)	11.1	5.31	88.8	0.72	0.61	+REPA-E (Ours)	16.2	5.22	74.7	0.68	0.58

Component	gFID↓	sFID↓	IS↑	Prec. ↑	Rec. ↑
w/o stopgrad	444.1	460.3	1.49	0.00	0.00
w/obatch-norm	18.1	5.32	72.4	0.67	0.59
w/o $\mathcal{L}_{ ext{REG}}$	19.2	6.47	68.2	0.64	0.58
REPA-E (Ours)	16.3	5.69	75.0	0.68	0.60

Method	gFID↓	sFID↓ IS↑		Prec.↑	Rec.↑						
100K Iterations (20 Epochs)											
REPA [53]	19.40	6.06	67.4	0.64	0.61						
REPA-E (scratch)	14.12	7.87	83.5	0.70	0.59						
REPA-E (VAE init.)	12.83	5.04	88.8	0.71	0.58						
200K Iterations (40 Epochs)											
REPA [53]	11.10	5.05	100.4	0.69	0.64						
REPA-E (scratch)	7.54	6.17	120.4	0.74	0.61						
REPA-E (VAE init.)	7.17	4.39	123.7	0.74	0.62						
400K Iterations (80 Epochs)											
REPA [53]	7.90	5.06	122.6	0.70	0.65						
REPA-E (scratch)	4.34	4.44	154.3	0.75	0.63						
REPA-E (VAE init.)	4.07	4.60	161.8	0.76	0.62						

Experiments

The impact of end-to-end tuning

Experiments

The impact of end-to-end tuning

VAE	Diffusion model	REPA	gFID-50K
SD-VAE [39]	DiT-XL [34]	×	19.82
VA-VAE [49]	DiT-XL [34]	×	6.74
E2E-VAE (Ours)	DiT-XL [34]	×	6.75
SD-VAE [39]	SiT-XL [30]	×	17.20
VA-VAE [49]	SiT-XL [30]	×	5.93
E2E-VAE (Ours)	SiT-XL [30]	×	5.26
SD-VAE [39]	DiT-XL [34]	1	12.29
VA-VAE [49]	DiT-XL [34]	1	4.71
E2E-VAE (Ours)	DiT-XL [34]	1	4.20
SD-VAE [39]	SiT-XL [30]	1	7.90
VA-VAE [49]	SiT-XL [30]	1	4.88
E2E-VAE (Ours)	SiT-XL [30]	1	3.46

The impact of end-to-end tuning

Tokenizer	Method	Training	#params	arams rFID↓	ams rFID				Generation w/ CFG					
Tonomilor		Epoches			gFID↓	sFID↓	IS↑	Prec.↑	Rec.↑	gFID↓	sFID↓	IS↑	Prec.↑	Rec.↑
AutoRegressive (AR)														
MaskGiT	MaskGIT [4]	555	227M	2.28	6.18	-	182.1	0.80	0.51	-	-	-	-	-
VQGAN	LlamaGen [45]	300	3.1B	0.59	9.38	8.24	112.9	0.69	0.67	2.18	5.97	263.3	0.81	0.58
VQVAE	VAR [46]	350	2.0B	-		-	-	÷.	-	1.80	-	365.4	0.83	0.57
LFQ tokenizers	MagViT-v2 [51]	1080	307M	1.50	3.65	-	200.5	-	-	1.78	-	319.4	-	-
LDM	MAR [28]	800	945M	0.53	2.35	-	227.8	0.79	0.62	1.55	-	303.7	0.81	0.62
Latent Diffusion Models (LDM)														
	MaskDiT [55]	1600	675M		5.69	10.34	177.9	0.74	0.60	2.28	5.67	276.6	0.80	0.61
	DiT [34]	1400	675M		9.62	6.85	121.5	0.67	0.67	2.27	4.60	278.2	0.83	0.57
CD VAE [20]	SiT [30]	1400	675M	0.61	8.61	6.32	131.7	0.68	0.67	2.06	4.50	270.3	0.82	0.59
5D-VAE [39]	FasterDiT [50]	400	675M	0.01	7.91	5.45	131.3	0.67	0.69	2.03	4.63	264.0	0.81	0.60
	MDT [12]	1300	675M		6.23	5.23	143.0	0.71	0.65	1.79	4.57	283.0	0.81	0.61
	MDTv2 [13]	1080	675M		-	-	-	-	-	1.58	4.52	314.7	0.79	0.65
			F	Represent	ation Alig	gnment N	lethods							
		80	675M	0.39	4.29	-	17	-	177	-	-	177		877.0
VA-VAE [49]	LightningDi I [49]	800	675M	0.28	2.17	4.36	205.6	0.77	0.65	1.35	4.15	295.3	0.79	0.65
SD VAE		80	675M	0.61	7.90	5.06	122.6	0.70	0.65	_	-	1 <u>-</u> 1		-
SD-VAE	KErA [33]	800	675M	0.01	5.90	5.73	157.8	0.70	0.69	1.42	4.70	305.7	0.80	0.65
	DEDA	80	675M	0.29	3.46	4.17	159.8	0.77	0.63	1.67	4.12	266.3	0.80	0.63
E2E-VAE (Ours)	KEFA	800	675M	0.28	1.83	4.22	217.3	0.77	0.66	1.26	4.11	314.9	0.79	0.66

Thanks for listening

