

# $\pi_0$ : A Vision-Language-Action Flow Model for General Robot Control

Physical Intelligence

Presenter: Shaofan Sun 2025.2.14



- Authorship
- Background
- Method
- Experiments
- Conclusion

# **Background: Vision-Language-Action Models (VLA)**



- Do planning for robot manipulation tasks (with large model)
- Main idea:  $\pi: \mathcal{O} \times \mathcal{G} \rightarrow \mathcal{A}$ 
  - $\mathcal{O}$  is the set of observations, e.g., images or videos
  - G is the set of language descriptions, e.g., task descriptions
  - *A* is the set of robot actions
  - $\pi$  is the mapping policy (the model)
- Challenges:
  - Multi-modal knowledge fusion
  - Accurate action prediction
  - Generalization ability

# **Background: RT-1**





- FiLM + EfficientNet for fusing the knowledge from images and language.
- TokenLearner for decreasing the number of tokens passed to Transformer (81 to 8).
- **Transformer** for predicting robot actions.







- LLM + large-scale data for better generalization ability.
- Generalizable in "understanding", but not in "predicting".

#### **Background: RT-H**





- Predict intermediate action descriptions and then accurate actions.
- Coarse-grained action descriptions are generalizable.

# **Background: OpenVLA**





- The first open-source VLA model.
- Simple and direct, but currently no one has successfully replicated it.

# **Background: Diffusion Policy**





- Input image/video observations as the conditions.
- No language guidance, each model can only handle a single task.

# **Background: RDT-1B**





- Largest diffusion model for robot currently.
- Combine image and language tokens and then inject them as the condition.

#### **Background: Transfusion**





![](_page_9_Figure_3.jpeg)

• Jointly optimize token and diffusion objectives.

Transfusion: Predict the Next Token and Diffuse Images with One Multi-Modal Model, Chunting Zhou, et al., arXiv 2024

# **Background: Flow matching**

![](_page_10_Picture_1.jpeg)

- Training CNFs based on regressing vector fields of fixed conditional probability paths.
- Flow Matching (FM) objective:

$$\mathcal{L}_{\text{FM}}(\theta) = \mathbb{E}_{t,p_t(x)} \| v_t(x) - u_t(x) \|^2$$

- Have no prior knowledge for  $p_t$  and  $u_t$ , intractable to compute  $u_t$
- Conditional Flow Matching (CFM) objective:

$$\mathcal{L}_{\text{CFM}}(\theta) = \mathbb{E}_{t,q(x_1),p_t(x|x_1)} \left\| v_t(x) - u_t(x|x_1) \right\|^2$$

• The FM and CFM objectives have identical gradients.

#### **Background: Octo**

![](_page_11_Picture_1.jpeg)

![](_page_11_Figure_2.jpeg)

- Transformer for token-based learning, diffusion head for action decoding.
- The predecessor work of  $\pi_0$ .

#### **Method: Overview**

![](_page_12_Picture_1.jpeg)

![](_page_12_Figure_2.jpeg)

- Data: internet-scale data, large robotics data (OXE),  $\pi$  dataset
- Architecture: VLM for multi-modal understanding, flow matching for action decoding
- Deployment: multiple kinds of robots

#### **Method: Architecture**

![](_page_13_Picture_1.jpeg)

![](_page_13_Figure_2.jpeg)

- VLM backbone: initialized from PaliGemma, SigLIP + Gemma
- Action expert: a separate set of weights for the action modality, analogous to a mixture of experts

#### **Method: Architecture**

![](_page_14_Picture_1.jpeg)

![](_page_14_Figure_2.jpeg)

- Action chunk, H=50
  - Efficiency
  - Semantics

- Conditional flow matching
  - Modeling continuous action distributions
  - Efficiency

#### **Method: Architecture**

![](_page_15_Picture_1.jpeg)

![](_page_15_Figure_2.jpeg)

- Train:  $L^{\tau}(\theta) = \mathbb{E}_{p(\mathbf{A}_{t}|\mathbf{o}_{t}),q(\mathbf{A}_{t}^{\tau}|\mathbf{A}_{t})} ||\mathbf{v}_{\theta}(\mathbf{A}_{t}^{\tau},\mathbf{o}_{t}) - \mathbf{u}(\mathbf{A}_{t}^{\tau}|\mathbf{A}_{t})||^{2}$   $q(\mathbf{A}_{t}^{\tau}|\mathbf{A}_{t}) = \mathcal{N}(\tau\mathbf{A}_{t},(1-\tau)\mathbf{I})$   $\mathbf{A}_{t}^{\tau} = \tau\mathbf{A}_{t} + (1-\tau)\epsilon$   $\mathbf{u}(\mathbf{A}_{t}^{\tau}|\mathbf{A}_{t}) = \epsilon - \mathbf{A}_{t}$
- Inference:

•

 $\mathbf{A}_t^{\tau+\delta} = \mathbf{A}_t^{\tau} + \delta \mathbf{v}_{\theta}(\mathbf{A}_t^{\tau}, \mathbf{o}_t)$ 

#### **Method: Data**

![](_page_16_Picture_1.jpeg)

![](_page_16_Figure_2.jpeg)

- Internet-scale data: inherited from pretrained VLM
- Open-X-Embodiment: a large-scale robot manipulation dataset
- $\pi$  dataset: collected by the authors

# Method: Language commands

![](_page_17_Picture_1.jpeg)

- Three kinds of commands:
  - high-level task commands like "bus the table"
  - intermediate subtasks like "pick up the napkin" and "throw the napkin into the trash"
  - use VLM to make semantic inferences

# **Experiments: Without post-training**

![](_page_18_Picture_1.jpeg)

![](_page_18_Figure_2.jpeg)

# **Experiments: Intermediate commands**

![](_page_19_Picture_1.jpeg)

Benefit more from intermediate commands with initialized VLM

![](_page_19_Figure_3.jpeg)

#### **Experiments: New tasks**

![](_page_20_Picture_1.jpeg)

![](_page_20_Figure_2.jpeg)

#### **Experiments: Complex tasks**

![](_page_21_Picture_1.jpeg)

![](_page_21_Figure_2.jpeg)

#### **Experiments: Complex tasks**

![](_page_22_Picture_1.jpeg)

![](_page_22_Figure_2.jpeg)

# **Experiments: videos**

![](_page_23_Picture_1.jpeg)

![](_page_23_Picture_2.jpeg)

• https://www.physicalintelligence.company/blog/pi0

![](_page_24_Picture_1.jpeg)

- Contributions
  - A VLA model that draws on the strengths of various approaches.
  - Extensive experiments validated the importance of the knowledge acquired through pretraining.

- Limitations
  - Data combination strategy.
  - Cannot directly generalize to unseen scenarios.
  - Unfair comparisons with the non-VLM model.

![](_page_25_Picture_1.jpeg)

• Future work:

- Data: How to appropriately expand/select pretraining data.
- LLM/VLM: How to more effectively analyze/utilize the prior knowledge of large models.
- Action prediction: How to balance prediction accuracy and generalization.

![](_page_26_Picture_1.jpeg)

# **Thanks for listening!**