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Y STRUCT Group Seminar

Background: Image Compression

« The Core of Image Compression

« Removal of Redundant Information

« Measuring Image Redundancy Under Information
Theory

Large deviation

« Large distribution deviation leads to high bit rates High bit rates

« Mutual Information:
[(X;Y)=H(X)+H((Y) - H(X|Y)
 The goal of image compression can be transformed into:

 Performing more accurate distribution estimation between

predicted image and real image « Small deviation

- Low bit rat
* Reducing the cross-entropy between two distributions ow bit rates



A\ STRUCT Group Seminar

Background: Learned Image Compression

« Goal: Rate-Distortion Optimization
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Ballé et al. Variational Image Compression with a Scale Hyperprior, ICLR 2018.
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Background: Learned Image Compression

« Goal: Rate-Distortion Optimization
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Ballé et al. Variational Image Compression with a Scale Hyperprior, ICLR 2018.
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Background: Diffusion-based Image Compression

[ As Entropy Coders ] [ As Autoencoders ]

 DIffEIC - Toward Extreme Image Compression with Latent Feature Guidance and Diffusion
Prior (TCSVT 2024)

Image Compression Image Reconstruction
N « Reconstruct VAE latents
a
D_> S l S I I l D  Inject Control to Diffusion
2
________________________________ ZO Lne — Ezg,c,t,e,zc € — E@(Zt, C, t: zc) H )
‘(a) S ® . Lyate = R(9) + R(2),
—> Main Fixed
. ontro. 2
1 —> Guidance —7> ff[odtulel Zero Conv Lsa p— H zc — E (;]’;) H ,
; —-> Concat
Encoder yf Q y L Hgf;r 2 ©Q 5 _______ Liota = )\Lrate + )\saLsa, + AneLne
. 1 = = = o=
EEmEE agﬁ—a—) (64 ;N"Zé”“:r ------ E ----- é ”“; d PrOblem:
" - o 5 e o 5 , .
D— eoler .= ; : & a8 -  Generation start from noise
yper w ! :
Dec i ' .
Ze ’% Zc 2t % noise estimator €y gzt—l * Content dr|ft



A\ STRUCT Group Seminar

Background: Diffusion-based Image Compression

For Post Processing [ As Entropy Coders ] [ As Autoencoders ]

« RDEIC: Accelerating Diffusion-Based Extreme Image Compression with Relay Residual
Diffusion (TCSVT 2025)

____________________________________________________________________________________

-+ Use VQ to quantize hyper z

« Use output of compression as the
starting point of denoising

. [71 ResBlock

- First train on fixed timestep, then

'
. 1 Cross Attention
&

finetune on whole process

1
* 7] Convolution Layer

;. Zero Convolution

.« Problem of diffusion-based post-

E [1 Element-wise Addition |
Dk EU Downsample E prOCGSSIHQZ

I

oy ! . .

: uantization
' @ Q

» Diffusion decoupled from R-D

i @ Concatenation

B o e § optimization
F « May introduce hallucinated details
+ |=—| Codebook

6
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Background: Diffusion-based Image Compression

[ For Post Processing ] As Entropy Coders [ As Autoencoders ]

« DDCM - Compressed Image Generation with Denoising Diffusion Codebook Models (ICML 2025)

Pieceie Xi+1: I"l’Z—I—l ? Xi . I’l"lz ? Generation " :

— Choose k;—

Choose k;11

XT

Random

(K)

(K) Compression :
(2) ;

Similarity to | i

target image

(7,42,10,...,4,12)

1) (1)

: Compressed
Selection Rules Fixed Codebook C; 1 Fixed Codebook C; Representations

v
Compressed Representation (kr41, k7, ..., kiv1,kiy. .., k2)

« Use discrete noise codebook to replace continuous sampling of Gaussian noise.
« During compression, select the optimal noise index step-by-step.
 For higher bit rates, use matching pursuit to linearly combine M codebook entries.
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Background: Diffusion-based Image Compression

[ For Post Processing ] [ As Entropy Coders ]

* PerCo - Towards Image Compression with Perfect Realism at Ultra-low Bitrates (ICLR 2024)

i image | > :gi"ext Encoder1 : .
‘ Laptonine A — Arclg(’ﬁ‘glc 01100010101..
| " Codebook
%
N S
q’ Eﬁg}(\i/[er bﬁgzgggr iik A / =
> Conditional LDM
GG LI0100 ) Diffusion Model Decoder

]

i Diffusion loop (xT)
« VQ-VAE-style architecture

 Diffusion model serving as the decoder, providing a strong prior.
« Compressed text caption providing global semantic information.
« Concat quantized result and diffusion output to U-Net.
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Background: Diffusion-based Image Compression

[ For Post Processing ] [ As Entropy Coders ] As Autoencoders

« PerCoV2: Improved Ultra-Low Bit-Rate Perceptual Image Compression with Implicit

Hierarchical Masked Image Modeling (arxiv 2025)

CLIP-G/14

$ 01100010101..

LDM
Encoder

Hyper
Encoder

"a bench sitting in a field with
mountains in the background”

VQ

Stable Diffusion 3
Flow Model LDM

Decoder

Diffusion Loop (xT")

Y

MiM/ VAR

Arithmetic 10101110100..
Coding

 Use Stable Diffusion 3 Flow Model for better image prior
« MIM (Masked Image Model) or VAR (Visual Autoregressive Model) to model hyper distribution
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Background: Diffusion-based Image Compression

[ For Post Processing ] [ As Entropy Coders ] As Autoencoders

Flow to the Mode: Mode-Seeking Diffusion Autoencoders for State-of-the-Art Image
Tokenization (ICCV 2025) (Baseline of this work)

X

> >
> =

Patchify

: \ ] Encoder
e — Bl B

€y

MMDIT -»

C=> Quantize >
> >

« Use MMDIT (adapted from FLUX) as decoder backbone
« Cis quantized using lookup-free quantization c=g¢(¢)=2-1[¢ > 0] —1.
« Decoder is trained to model a velocity field v = dy(z¢,c, t)

10
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STRUCT Group Seminar

Background: Evaluation Metrics

[ NN Approximation ] [ VLM for Evaluation ]
2
- PSNR (Peak Signal-to-Noise Ratio) PSNR — 10 - log, (MAXI )
MSE
 based on MSE derivation
« strictly measures pixel-level error m—1n—1
MBSE = [1(3,4) — K (i,5)]°
mn
1=0 75=0

« SSIM (Structural Similarity Index Measure)

Based on similarity of luminance, contrast, structure (2papty + C1) (204, + Cs)

SSIM(z,y) =
Aligns more closely with human perception (=) (pz + ui + Cr)(oz + oy + C2)

Problem: Mechanical, often contradict human judgement of visual quality

11
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Background: Evaluation Metrics

[ Classical Methods ] [ ] [ VLM for Evaluation ]
« LPIPS
« Use pretrained network to extract feature d(z, z) = Z 1 Z |w, ® (ﬁila — 9 )2
- Measures image similarity in deep feature space - HiW, how

through L2 norm
 DISTS

 Use pretrained network 1GD, ) =

« Compute structure and texture similarity in
feature space

DG, 3500 8) = 1= 303 (cust@, 5) + 8@, )

1=0 j5=1

Fu et al. DreamSim: Learning New Dimensions of Human Visual Similarity using Synthetic Data, NeurlPS 2023. 12
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Background: Evaluation Metrics

[ Classical Methods ]

[ VLM for Evaluation ]

+—— [ 0RA
Ensemble

DreamSim

« Add LoRA to ensemble (CLIP/DINO/OpenCLIP)
« Use Cosine Distance to measure distance

Cosine
distance

— Cosine
distance

Problem of NN Approximation | _—
* Directly optimizing on those metrics can exploit their null-space
« May not align with human preference

Hinge
Loss

13
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Background: Evaluation Metrics

[ Classical Methods ] [ ] [ VLM for Evaluation ]

 Text-aligned Image Compression

- E.g. TACO “tri-colored fluffy (- ¥ Text Adapter )
pomeranian dog” _ 5 c g c m c
- Utilize CLIP constructive loss for text H N EH AR A ™
alignment: T ETEIE T B
\ ol =
s — )
Li(%, %) = Len(Ai(®), f(€)) + B - I1fiCx) — Db ARG RL G RLE
SEM=ll 55 |l = < A | S
relevance between text CLIP embedding distance _ JU
and image of images N <
) s
N : 5y 5y
1 exp(Si; )T (2 k- y ( 5% 58
Eclip = 7ﬁ Zlog - p( H) Sg;’j — . fT(Cz) ff(:{,'f) @ g :%g g g
o1 2j-19%p(Si) [z () 1 77 (25) .

Lee et al. Neural Image Compression with Text-guided Encoding for both Pixel-level and Perceptual Fidelity,
ICML 2024.
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Background: Evaluation Metrics

[ Classical Methods ] [ NN Approximation ]

« 2AFC Prompting of Large Multimodal Models for Image Quality Assessment

(TCSVT 2024)

« Employ the two-alternative forced choice (2AFC) prompting

« Measure the consistency, accuracy and correlation of evaluation result

-

First: MOS =

7 Second: MOS = 4

Q: Which image has better visual quality?
A (Human): First 5
A (IDEFICS-Instruct): Second
A (mPULG-Owl): Second

A (XComposer-VL): First

A (Q-Instruct): First

A (GPT-4V): First

(a)

: 2 = 7 - = ":;c
o e s - |
First: MOS = 46 Second: MOS =75
Q: Which image has better visual quality?

i A (Human): Second

i A (IDEFICS-Instruct): First
i A (mPULG-Owl): Second
A (XComposer-VL): First

i A (Q-Instruct): First

A (GPT-4V): Second
(b)

15
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Background: Diffusion DPO

« Diffusion Model Alignment Using Direct Preference Optimization (CVPR 2024)
 Reinforcement Learning from Human Feedback (RLHF)
« Assume x, : generation result, ¢ : condition (text, image, etc.)

« RLHF aims to optimize pg(X,|c), such that reward function r(c, x,) is maximized under
the KL-Divergence constraint:

max Ecxo [7(€,X0)] = BDK| [Pe KolO)|IPrefXolc)]

Reward Item KL-Divergence Item

* pref - reference distribution, g : hyperparameter

16
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Background: Diffusion DPO

« Diffusion Model Alignment Using Direct Preference Optimization (CVPR 2024)

« Reward Modeling: Bradley-Terry (BT) model

« Assume access only to ranked pairs generated from same condition c

condition

loser

« Maximum Likelihood Estimation

Data: (¢, x¥,x5)
ppT(xy > xb|c) =0 (r(c, xy) — r(c,xf)))
o : sigmoid function

r can be parameterized by Neural Network g

LgT(¢) = —E iyl lloga (r¢, (c,xp) — 1¢ (c,xf)))]

17
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max E¢y, [r(c,Xo)] — BDKL[Pe XolO)||PrefXol0)]

Background: Diffusion DPO RLHF: **

« Diffusion Model Alignment Using Direct Preference Optimization (CVPR 2024)

« DPO Objective Function
 Unique Global Optimal Solution:
pe(Xolc) = Pref(X0|C) exp(r(c,x9)/B) /Z(c)

Reward Item KL-Divergence Item

2(©) = ) pref(xole) exp(r(c, xo)/6)

Therefore, we can get the solution of r(c, x¢):

po(Xplc)
r(c,xg9) = B lo + BlogZ(c
( 0) )8 gpref(xolc) ﬁ g ( )
« with MLE of BT model, we derive:
po(x¥|c) po(xo]c)
L B)=—-E__w.illogo|Blo — Blo
DPO %0 'Xél © (lB gpref(xmc) IB gpref(X%)lC)

18
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. . Lppo(0) = —E_ w [loga(ﬁlog Pe (XB:!,C) — Blog Pe (xf)Jc) )]
Background: Diffusion DPO Pref(xv'Ic) Pref(x5c)

« Diffusion Model Alignment Using Direct Preference Optimization (CVPR 2024)

 DPO for Diffusion Models

- Reward on the whole diffusion chain x¥.;, x}.7 :

Do (XB‘iT) Do (xg:T)
Lpppo (0) = —E e x1)..plogo (ﬁEx‘ﬂTNPe(-xB”)a zh.rpo(-[x5) llog Pret (XU7) tog Pret (X}.7)

* Markov process pg(xo.1) = p(x1) [Ti=1 Po (X¢-1 | X¢)

By Jensen inequality & convexity of log (referring to Appendix A of paper)

Lpppo (0) < = B xt)wD,tmtd (0,1) xp ~a(xt [x0) i ma(x xb) 108 7 (=BT (

0 X0

+ D (q(x:21[%0.¢) [[po (X221 [%17)) — Drr(q(x:21 (%0 ¢) || Pref (%21 %)) Winner

— Dkr(q(x;_[x5,,) [Ipe (i1 |%})) + Dxr(g(x}_ x5, ) | Pres(X;_1X1)))- Loser

19
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w l
Background: Diffusion DPO  lpro®) =—Ecyya \mga(mog Po(KEIS) _ g og PoKolc) ﬂ

pref(xo |C) pref(Xf)l(.‘.)

« Diffusion Model Alignment Using Direct Preference Optimization (CVPR 2024)

« DPO for Diffusion Models 32
t
Using derivations in DDPM, we get: 202 (1 — )

*
L(e) - = IE(x0 x4)~D,t~U(0,T) x¥ ~g(x¥ |x¥),xt ~g(xt X)) 10g0' ( ﬂTw()‘t) (

e — ea(xy”, )12 — Il — eree(xi’, )2 — (ll€' — €o(xp, t) 2 — l€" — evee(xt, £)113)))

« w(A;) : Weight of loss function in DDPM (constant)
* €9(X4,t) : The predicted noise

« KL-Divergence = | 2-distance of noise

20
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Background: Diffusion DPO

« Diffusion Model Alignment Using Direct Preference Optimization (CVPR 2024)
« Summary
- Triplet Data: (¢, x¥,x) (Bradley-Terry Model)

« As long as we get those winner and loser,

we can perform finetuning using the following condition

Loss Function: loser

L(0) = — E(x x )n Dt~ (0,7) x ma (i 15 ) xt (1) 108 T (=BT w(Ae) (

le — ea(xy”, )13 — lle” — eree(xy’, )13 — (ll€' — €a(xt, )13 — ll€' — €rer(x, 1)112)))

21
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Methods

e Overview

Prompt: In this
task, you’ll be

asked to compare -
an original image
with two AI
reconstructions...
Autoregressive
Entropy Coder

VLM preference Ensembled x3
VLM || VLM Response: This example contains an image of two gazelles. Gazelles
are a human-salient object since they are animals. So preserving them

in the image is a top priority.

Let's compare the original image to reconstruction A first...

Now, let's compare the original image to reconstruction B...

Given that the gazelles are human-salient objects and Reconstruction
A clearly preserves their details better, Reconstruction A is

significantly better than Reconstruction B.

Reconstruction A wins by 4.
RATING: -4

LPIPS preference l

Original Image

LPIPS

g g Unanimous Vote
—
i 5 = VLM LPIPS

Tor .
A > B A > B

Diffusion DPO

Figure 3. Method. An original image is encoded to a one-dimensional discrete latent code via an encoder. The discrete code is entropy
coded by an auto-regressive language model. The diffusion decoder samples two reconstructions conditioned on the latent code, which are

ranked via a VLM. The resulting preference is used to train the full diffusion autoencoder via Diffusion DPO [47].

22
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Methods

e Encoder & Decoder Architecture

 Architecture;: Same as Flow to the Mode
> >
-»> >

S - Encoder

¢=> Quantize >¢
> ->
 Difference
« Use Finite Scalar Quantization (FSQ) instead of lookup-free
quantization: round(f(z))
« Separately train a hyper network to compress the discrete

tokens from FSQ

23
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Methods

* First Stage Training (Same as Flow to the Mode)

Stage 1a
Lﬂow Lperc
1
X
Lcommit{ ['ent E

Set fixed timestep

token reconstruction loss

Lo =E[ e 0@}

flow matching loss )
Liow =E ”m_z_dﬁ(xtaQ(e9($))’t)||2

erceptual loss token entropy loss
Lpere = EFperc($= zt + tdg (1, Q(eﬂ(“?))’t))} Len = E[H(q(¢)] — H(E[q(8)])

Stage 1b

Backpropagate through the whole chain

_flow matching loss
2
Liow = E ||x —z— dg(mt,q(eg(as)),t)||2].

perceptual loss
Esample = dperc (.’L‘, dtn © dtn_l -0 dtl (Z)) ]

24
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Methods

« Second Stage Training (With Diffusion DPO)

o Utilize the Diffusion DPO we have derived before:

L(0) = Lppro(0) + Ariow Lriow (0)

Lopro(f) = —Elog o (—fw(A) (A" — A'))

Diffusion DPO Item

AY = € — eo ()", %, t)[[5 — [l€” — ewi(%i, %, 1)

2

2

Al = |l€" — ep(%,x, 1) € — eni(XL, x, 1)

Lrtow (0) = Beoa (v = vo(x, x4, 1)[[3)

Flow Matching Item

« For training stability
« v =€+ the flow matching velocity

* v-parameterization is chosen

« Train with the encoder unfrozen for slightly better performance

25
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Methods
* VLM Reward Computation

« Use Gemini 2.5-Flash to judge compressed images

Prompt: In this VLM preference Ensembled x3  Pass three images:
task, you’ll be

asked to compare VLM || VLM Response: This example contains an image of two gazelles. Gazelles ° Or|g|na| Image X

an original image are a human-salient object since they are animals. So preserving them

. in the image is a to riority.
with two AI E i o

reconstructions...

e Reconstruction X

Let's compare the original image to reconstruction A first...

A
0
- Reconstruction %5

Now, let's compare the original image to reconstruction B...

v

A clearly preserves thetr details better, neconsiruceion 4 = | ° Pass a detailed instruction
significantly better than Reconstruction B.
Reconstruction A wins by 4. ¢ ASk VLM tO glve a rate
RATING: -4
between -5 and 5, and
TRIDS profarence l provide detailed reasoning

T ¢

Unanimous Vote

LPIPS

Sample B A . S B-.

. ) 26
Diffusion DPO
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Methods
* VLM Reward Computation

« Several mitigation strategies to improve the reliability

e Rate in two-orders

7 _ 7 _ ~A ~B 7 _ 7 - ~B ~A
7QB,O - _TA,O - VLM(mva s Lo 7Z) TA,l - _TB,l — VLM(:B’ Lg Lo 72)

rly = sign(fril’@ + Tfﬁl,l)v rg = sign(rféﬁo T 74?8,1)'

« Average over n random seeds Unanimous Vote
T ﬂ
_ i _ i
rA = ZTA: B = Z”"B Ensembled x3
+ Ensemble VLM reward with LPIPS ——

 Require LPIPS and the VLM to produce a unanimous judgment
« |f they disagree, the sample is discarded

« Use the reward to determine winner and loser

27
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Experiments

* Prompting Details

 (Detailed Task Description)

In this task, you will be asked to compare an original image with two Al reconstructions of that image,

Reconstruction A followed by Reconstruction B. You will see triplets of images like (original, A, B).
* (Score Interpretation)

You will give a relative rating of the two images. This is between -5 and 5, inclusive.

Higher scores mean that Reconstruction B is relatively better.

 (Give a ranking example)

So if you give a score of -2, you think A is kind of better, and if you give a score of +5, you think B is

obviously significantly better. Be sparing with the higher magnitude scores - you should

expect that most triplets you see won’t have an obviously better reconstruction.

28
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Experiments

 Prompting Details
(continue)
 (Rating Criteria and Priority)

In your ratings, make sure to prioritize differences that are semantically important to a
human observer. If a distortion changes the meaning of an image to a human observer, then it’s
more significant than if a distortion changes the texture of an image. Your response should conclude

with “RATING: X”, where X is your rating, i.e. -2 or 3.
 (Specific Requirements)

Now here is the image triplet that you need to rate. Make sure to provide a lot more reasoning

and make sure to carefully look at each of the three images and provide meticulous visual justifications

based on evidence from each image! Remember, negative scores mean that A is better, and

positive scores mean that B is better. (Emphasize again)

29
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STRUCT Group Seminar

« Quantitative Results

1200 A

—
—
(=1
o

MS-COCO

oo

[=3

[=]
1

1025 A

CLIC (2020)

CLIC (2022)

—
[=1
(=3
[=]
1

Human Elo (1) FD-DINO (]) FID (]) LPIPS (])
¥ v, v
60 ’, |
- 4 030
. 50
025
v 40 3 v
30 ) % 0.20 :
2 Y. "
201 Y \. S| oas e
T T T -vl ‘TI
v 80 A ‘ ]
] Ly 022
444
60 - n 0.20
\\ ."'
3Ite N 0.18
40 N
\S 0.16
2+
. v 0.14
c',
: 0225
20
300 0200
0.175
15
200 1 0.150 1
v
" i . 0.125
100 - hd 10 v
T T T T T T T T T 0100 T T T
02 0.4 0.6 02 0.4 06 02 0.4 0.6 02 0.4 0.6
BPP (Bits Per Pixel) BPP (Bits Per Pixel) BPP (Bits Per Pixel) BPP (Bits Per Pixel)

321

30 1

28 A

32 1

301

28

26

PSNR (1)

] /"" HiFiC

A

PerCo
—8— Ours (VLM)

-"

%= HiFiC

—8— Ours (VLM)

--¥- HiFiC
-E- PO-ELIC
—8— Ours (VLM)

0.2 04 0.6
BPP (Bits Per Pixel)

FD-DINO: Fréchet
Distance with DINO
Backbone

Human Elo: computed
via large-scale user
studies

Compare to HiFiC, it
performs better on
perceptual metrics

30
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Experiments

« Qualitative Results

« More accurate reconstruction of text, faces, architectural details, etc.

Original Ours: 0.196 bpp HiFiC: 0.199 bpp

PerCo: 0.5 bpp

31
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Experiments

« Qualitative Results

« More accurate reconstruction of text, faces, architectural details, etc.

Original Ours: 0.198 bpp HiFiC: 0.287 bpp

PerCo: 0.12 bpp

32
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Experiments

Qualitative Results

« More accurate reconstruction of text, faces, architectural details, etc.

Original Ours: 0.203 bpp HiFiC: 0.281 bpp

PerCo: 0.12 bpp

33
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Experiments

Qualitative Results

: HiFiCLe: 0.215 bpp

More accurate
reconstruction of text,
faces, architectural
details, etc.

A\l g “ L

HiFiCM: 0.391 bpp S & ' R : , & > s :
: ‘ » TN -_ 2 \ S
: e . ,\,»s -

<>

s

Original
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Experiments: Verification

 Replicating human judgments
« Use BAPPS (Berkeley-Adobe Perceptual Patch Similarity (BAPPS) dataset and own
collected Compressed Images dataset

« Gemini 2.5-Flash can replicate human perceptual judgments

Patch 0 Reference Patch 1 : Patch 0 Reference Patch 1
Accuracy BAPPS-Val Compressed Images i
Human 73.99 72.15 . ¥
LPIPS 69.56 92.32 [’:/ZZ:ISR, SSIM, FSIM v i v
DreamSim 68.13 f - S:zjs;vri\lse;: (I)\lr:tsworks i v i v o
VLM 69 .44 83 .80 Self-Supervised Networks v : v
Supervised Networks ‘/ : ‘/

Human 2AFC Benchmarks Examples of BAPPS Dataset

35
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Experiments: Ablation Study

 Importance of the VLM

« Compared with post-training only with

LPIPS

* Post-training provides gain

-

2 ‘4 *- - i
| @i
il

\a
¥ -

T{f‘.v SRR
\ B Y ™

MS-COCO Human Eloft FD-DINOJ] FID] LPIPS] PSNR

Ours (0.07bpp) 858 62.25 2.20 0.274 21.78
— LPIPS post-training only 838 63.63 2.33 0.274 21.77

Ours (0.21bpp) 1112 16.83 1.35 0.168 26.50
— LPIPS post-training only 1103 16.96 1.30 0.169 26.54
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+ Self-ensembling

* Performance increases as the number of
VLM random seeds is increased

* Final choice: 3 seeds for balancing
performance and efficiency

« Ensembling with LPIPS

MS-COCO FD-DINO| FIDJ] LPIPS] PSNR 1
Ours (VLIC) 67.83 2.31 0.278 21.68
— No ensemble w/ LPIPS 67.68 2.10 0.280 21.29
— No post-training 82.31 2.40 0.300 21.27
— No self-ensembling 68.36 2.15 0.280 21.53

Ensembling Improves Alignment w/ Human Judgement
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Figure 5. Scaling self-ensembling. The VLM becomes more pre-

dictive of human judgment on BAPPS [23] as test-time compute
(number of VLM seeds) is scaled.
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Limitations

« Ranking hallucination
 Misjudging when images
are highly similar

 Fails to be self-consistent

. - -
« More expensive to s
aa _ 8 wdr 'y _
compute Reconstruction 1 Original Reconstruction 2
« Each generation must be VLM prompted with (Original, 1, 2): “... Overall, Reconstruction B is better
fed to the LLM for because it preserves the whiskers better than Reconstruction A and also produces

a more accurate color for the bridge of the nose and has less blurring for the

evaluation floral pattern. It is a slight improvement over Reconstruction A ...”

- Adds additional latency

VLM prompted with (Original, 2, 1): “... In reconstruction B, we have less

* shared by other diffusion- smudging on the textures of the flower, which are less defined in Reconstruction
based approaches A, so this is another key win for Reconstruction B. Reconstruction B has less

discoloration, so it is better. Therefore, Reconstruction B is superior ...”
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Takeaways

« Off-the-shelf VLMs have learned a visual prior highly correlated with
human perception
« Utilizing VLM for post-processing and reinforcement learning is beneficial

* VLM evaluation and training can be conducted in parallel

* The noisiness and uncertainty of VLM should be considered
 Prompt engineering
 Average over multiple random seeds

« Use existing metrics to verify VLM judgement



Thanks for listening!
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