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Background – UNet vs. DiT
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• UNet Architecture

• Distinct Downsampling / Upsampling blocks

• Clear separation of semantic levels

• Editing intuition: Manipulate specific decoder layers.

• DiT Architecture:

• Repeated architecture

• No explicit coarse-to-fine structure

• Challenge: Where should we inject features for editing?



Background – Flow Matching vs. Diffusion
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• Diffusion: Models curved stochastic paths (SDE)

• Flow Matching: Models straight velocity fields (ODE)

• Faster sampling, better couplings



Background – Flow Matching vs. Diffusion
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• SDXL vs. Flux:

• SDXL: Different prompts -> Different layouts/poses

• Flux: Different prompts -> Same layout, only semantic changes



Background – Diffusion Transformer
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• Patchify: Image → Latent → Patches → Linear Embeddings

• Tokens: Image is treated as a sequence of tokens, similar to NLP

• Self-Attention: Global context interaction at every layer

• Scalability: Performance scales well with compute (FLOPs) and

parameters



Background – Flux Architecture
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• Flow Matching Backbone: Rectified Flow for straighter generation

paths

• Structure:

• Double Blocks (Multi-Stream): Separate processing for Text/Image,

followed by joint attention. (19 blocks in Flux.1-dev)

• Single Blocks (Single-Stream): Concatenated stream sharing same weights.

(38 blocks in Flux.1-dev)

• Huge Parameter Count: ~12B parameters



Background – Multimodal Diffusion Transformer
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• Separate Weights: Text and Image

have separate embedding weights

• Joint Attention: Text tokens and Image

tokens interact in a unified attention

matrix

• Bidirectional: Image attends to Text,

Text attends to Image



Background – Rotary Positional Embeddings
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• Rotary Positional Embeddings (RoPE)

• Mechanism: Encodes position by rotating query/key vectors

• Feature: Captures relative positions effectively

• In Flux: Applied to both Queries (Q) and Keys (K) at every layer



Background – Editing Challenge in DiT
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• Attention Injection: A standard technique

for training-free editing

• Copy Key/Value from Source generation

to Target generation

• The Problem:

• Injecting into all layers -> Over-constrains

(Copies source image exactly)

• Injecting into random layers -> Unstable

results

• Which layers are responsible for preserving

content vs. following prompts?



Background – Inversion in Flow Models
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• Inversion: Mapping a real image back to its initial noise zt

• Euler Inversion: Simply reversing the ODE step

• Problem: Simple inversion in Flux often fails to reconstruct the

image perfectly or leads to artifacts during editing



Motivation - The "Black Box" Dilemma
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• Structural Ambiguity

• UNet: Explicit Coarse-to-Fine

• DiT: Isotropic Architecture

• Research Goal

• Decipher the Layers: Find which specific layers control Structure vs.

Appearance
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Methods - Stable Flow
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• Phenomenon: Changing the

prompt in Flux results in

highly aligned structures

• Opportunity: This natural st-

ability simplifies the editing

task



Methods - Stable Flow
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• If a layer is important, skipping it should drastically change the output

• Experiment

• Generate reference image with full model

• Generate ablated image by skipping layer

• Measure Perceptual Similarity (DINOv2)



Methods - Stable Flow
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• Findings

• Vital layers are sparse

• Distributed throughout the network

(not just early or late)

• Specific indices for Flux: e.g., Layers

0, 1, 17, 18, 53, 54... (scattered)



Methods - Stable Flow
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• Skipping Non-Vital Layers: Minimal

change to image

• Skipping Vital Layers: Complete

noise, structural collapse, or identity

loss

• Conclusion: Editing should focus on

injecting features into Vital Layers



Methods - Stable Flow
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• Selective Attention Injection

• Vital Layers: Inject features (K, V) from Source

• Preserve Structure & Identity

• Non-Vital Layers: Generate new features from Edit Prompt

• Function: Allow Semantic Changes



Methods - Stable Flow
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• Vital Layers: Strong attention to Visual Tokens (Self-preservation)

• Non-Vital Layers: Stronger attention to Text Tokens (Prompt adherence)

• Injecting into Vital Layers enforces the source image's visual constraints,

while leaving Non-Vital layers to attend to the new text instructions



Methods - Stable Flow
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• Problem: Euler Inversion creates artifacts

• Solution: Latent Nudging

• Perturb initial latent

• Push latent slightly Out-of-Distribution (OOD)



Methods - Stable Flow
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• Capabilities

• Non-Rigid Editing

• Object Addition

• Scene Editing

• Style Transfer



Methods - Stable Flow
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• Key Contribution: Automated detection of Vital Layers

• Strategy: Inject in Vital, Generate in Non-Vital

• Fix for Real Images: Latent Nudging

• Limitation: Doesn't differentiate types of editing
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Methods - FreeFlux
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• Attention Calculation:

• With RoPE:

• The Conflict: Does the attention mechanism rely on:

• Semantic Similarity (Content matching)?

• Positional Encoding (RoPE matching)?



Methods - FreeFlux
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• Method: Manipulate RoPE during

inference to see what breaks

• Intervention:

• Keep Q unchanged

• Shift or Remove RoPE from $K$

• Logic:

• If shifting RoPE ruins the image -> Layer

relies on Position

• If shifting RoPE has no effect -> Layer

relies on Content



Methods - FreeFlux
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• Position-Dependent Layers (P-Layers):

• Image breaks if RoPE is touched

• Role: Structure, Layout, Object Placement.

• Indices: e.g., Layers 1, 2, 4, 26, 30...

• Content-Dependent Layers (C-Layers):

• Image stable even without RoPE

• Role: Texture, Semantics, Appearance.

• Indices: e.g., Layers 0, 7, 8, 9, 10...



Methods - FreeFlux
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• Idea: Different editing tasks require manipulating different information

• Categorization:

• Position-Dependent Editing: Object Addition (Needs to place something new)

• Content-Dependent Editing: Non-Rigid Editing (Change shape but keep texture)

• Region-Preserved Editing: Background Replacement (Keep FG pixels exact)



Methods - FreeFlux

27

• Task: Add a new object

• Strategy: Inject P-Layers

• Keep the original layout (P-Layers), allow C-Layers to generate

• Challenge: Suppression

• Source image has "nothing" at the target spot

• Injecting source features suppresses the new object



Methods - FreeFlux
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• Step 1 (Reasoning): Run a

partial sampling step to let

the model "plan" where the

new object goes

• Step 2 (Generation): Restart

sampling

• Inside the new object mask: Do

NOT inject source features

• Outside the mask: Inject source

features



Methods - FreeFlux
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• Task: Change pose

• Strategy: Inject C-Layers

• Change Position

• Keep Texture/Identity



Methods - FreeFlux
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• Task: Change background, keep foreground

• Strategy: Value-Only Injection in ALL Layers

• Use SAM-2 or Cross-Attention to mask foreground

• Replace only V for foreground pixels

• Better edge blending than Latent Blending
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Experiments
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Qualitative Results

• Comparison: Stable Flow vs. FreeFlux vs. InstructPix2Pix

• Observation:

• Baselines often fail to change pose

• FreeFlux (C-Layer injection): Successfully changes pose while keeping fur pattern



Experiments
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Qualitative Results



Experiments
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Qualitative Results



Experiments
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Quantitative Results

• Metrics: CLIP-Text (Prompt adherence), CLIP-Image (Structure

preservation)

• Table: Compare Scores

• Stable Flow achieves high balance

• FreeFlux generally outperforms in CLIP-Dir (Directional change accuracy)



Experiments
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Ablations

• Validation of P vs. C Layers

• Using P-Layers for Non-Rigid editing -> Failure (Image doesn't move).

• Using C-Layers for Object Addition -> Failure (Background changes).

• Conclusion: The mechanistic distinction is correct.



Outline

37

• Authors

• Background

• Stable Flow: Vital Layers Analysis

• FreeFlux: RoPE-Based Mechanism Analysis

• Experiments

• Conclusion



Conclusions
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• Commonality:

• DiT layers are heterogeneous (functionally different).

• Parallel generation + Attention Injection is the way to go.

• Flux requires special handling (Inversion, RoPE).

• Evolution:

• Stable Flow: Empirical discovery ("Some layers are vital").

• FreeFlux: Mechanistic explanation ("Layers differ by RoPE dependence").



Takeaways for DiT Editing
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• Don't touch everything: Selective injection is key.

• Position vs. Semantics: Decoupled in Flux via RoPE.

• Pre-computation helps: Reasoning steps (Mask extraction) improve

complex edits.



Thank you for Listening!

40
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