Stable Flow: Vital Layers for Training-Free Image Editing

CVPR 2025

Omri Avrahami Or Patashnik Ohad Fried Egor Nemchinov
Kfir Aberman Dani Lischinski Daniel Cohen-Or
Snap Research The Hebrew University of Jerusalem Tel Aviv University Reichman University

&

FreeFlux: Understanding and Exploiting Layer-Specific
Roles in RoPE-Based MMDiTforVersatile Image Editing

ICCV 2025

Tianyi Wei Yifan Zhou Dongdong Chen Xingang Pan
S-Lab Nanyang Technological University Microsoft GenAl

STRUCT Group Seminar
Presenter: Lan Xicheng
2026.01.19

. Outline

* Authors

« Background

« Stable Flow: Vital Layers Analysis

* FreeFlux: RoPE-Based Mechanism Analysis
* EXxperiments

« Conclusion

B Background — UNet vs. DiT

* UNet Architecture ! e
Distinct Downsampling / Upsampling blocks ! ----------- A e
« Clear separation of semantic levels
« Editing intuition: Manipulate specific decoder layers.

* DiT Architecture: K N

Repeated architecture I T |
. . . N 2 / Feedforward
« No explicit coarse-to-fine structure Linear and Reshape / S
. . g Layer Norm !’ SRl
« Challenge: Where should we inject features for editing? el %
N x DIT Block seals 1]
Patchify ~Embed '\ Sateron
tl | \\ Scalel, Shift ﬂ
Noised Timestep t \\ LayerlNorm MLP
Latent Lablely \\ — .I. ’
32x32x4 _ Input Tokens. Conditioning J
Latent Diffusion Transformer DiT Block with adaLN-Zero

2

. Background — Flow Matching vs. Diffusion

« Diffusion: Models curved stochastic paths (SDE)
* Flow Matching: Models straight velocity fields (ODE)
« Faster sampling, better couplings

1
min/ E [[|(X1 — Xo) — v(Xe, t)||*]dt. Xe=tX1+(1-t)Xo, ¢te€l0,1].

. . - -
Linear interpolations Learned vector field

. Background — Flow Matching vs. Diffusion

« SDXL vs. Flux:

« SDXL: Different prompts -> Different layouts/poses
« Flux: Different prompts -> Same layout, only semantic changes

T — ,_?:é =
“A photo of a + “dog wearing + “cat wearing + “casting
dog and a cat...” a blue hat” vellow glasses” shadows”

. Background — Diffusion Transformer

« Patchify: Image — Latent — Patches — Linear Embeddings

« Tokens: Image is treated as a sequence of tokens, similar to NLP
« Self-Attention: Global context interaction at every layer

« Scalability: Performance scales well with compute (FLOPs) and

/(i
/
. / 5
Noise > // \
Pointwise
32x§:2x4 32)(112:(4 // F i
1
Linear and Reshape e A
1 / 1
Layer Ni
Layer Norm f e
L — ; i)
N x DIT Block i @
1
! ! < Mult-Head
Patchify Embed '\ S
| \ | - Y1.P1
\ Scale, Shift ~ +————
. | { -
Noised Timestep ¢ \ Layer Norm MLP
Latent | \\ —_—T 1
32x32x4 Label y

\ Input Tokens Conditioning)
Latent Diffusion Transformer DiT Block with adaLN-Zero

. Background — Flux Architecture

 Flow Matching Backbone: Rectified Flow for straighter generation
paths

e Structure:

« Double Blocks (Multi-Stream): Separate processing for Text/Image,
followed by joint attention. (19 blocks in Flux.1-dev)

« Single Blocks (Single-Stream): Concatenated stream sharing same weights.
(38 blocks in Flux.1-dev)

 Huge Parameter Count: ~12B parameters

. Background — Multimodal Diffusion Transformer

Separate Weights: Text and Image
have separate embedding weights

Joint Attention: Text tokens and Image
tokens interact in a unified attention
matrix

Bidirectional: Image attends to Text,
Text attends to Image

;/;————*[modugﬁon J
|

| text embeddings |

[linear]
l_‘

t
R
noise level token

|image embeddings |

[modulation J*—————~\2

linear

‘_l

|

|

.I
]
Q K "\v/'
Joint Attention

I

§
[linear

; —————*{ modulation]

i

linear

[modulation J+——————

' Repeat

d times

B Background - Rotary Positional Embeddings

* Rotary Positional Embeddings (RoPE)

 Mechanism: Encodes position by rotating query/key vectors

« Feature: Captures relative positions effectively

« In Flux: Applied to both Queries (Q) and Keys (K) at every layer

Im

!
Ty

Io /

Position

w N

v | | | |
v -| | | |

| 5

Position

R

,,,,,,,,,,

. Background — Editing Challenge in DiT

« Attention Injection: A standard technique
for training-free editing

 Copy Key/Value from Source generation
to Target generation

e The Problem:

* Injecting into all layers -> QOver-constrains
(Copies source image exactly)

* Injecting into random layers -> Unstable
results

 Which layers are responsible for preserving
content vs. following prompts?

Result: Exact Copy
(Over-constrained)

Source
Generation |

Key/Value Pairs

The Question:
Which Layers?
(Balance Content vs. Prompt)

Result: Unstable

. Background - Inversion in Flow Models

* Inversion: Mapping a real image back to its initial noise z,
« Euler Inversion: Simply reversing the ODE step

 Problem: Simple inversion in Flux often fails to reconstruct the
iImage perfectly or leads to artifacts during editing

B Motivation - The "Black Box" Dilemma

« Structural Ambiguity
 UNet: Explicit Coarse-to-Fine
« DiIT: Isotropic Architecture

e Research Goal

« Decipher the Layers: Find which specific layers control Structure vs.
Appearance

11

. Outline

* Authors

« Background

« Stable Flow: Vital Layers Analysis

* FreeFlux: RoPE-Based Mechanism Analysis
* EXxperiments

« Conclusion

12

. Methods - Stable Flow

 Phenomenon: Changing the
prompt in Flux results in
highly aligned structures

(1) SDXL [67]

* Opportunity: This natural st-
ability simplifies the editing
task

(2) FLUX [47]

(3) Stable Flow

“A photo of a + “dog wearing + “cat wearing + “casting
dog and a cat...” a blue hat” vellow glasses™ shadows™

13

B Methods - Stable Flow

« If alayer is important, skipping it should drastically change the output

* Experiment
« Generate reference image with full model
« Generate ablated image by skipping layer
« Measure Perceptual Similarity (DINOv2)

T 1
vitality(f) = 1—E Z d(My (s, p), M¢(s,p))

" s€ S.peP
Generate Generate

Full Generation (all layers)

Perceptual Similarity

(
—
.
H
L]
—
Layer 1) 1{ Layer1 J

Partial generation (bypassing layer i)

B Methods - Stable Flow

* Findings

Vital layers are sparse

Distributed throughout the network
(not just early or late)

Specific indices for Flux: e.g., Layers
0,1,17, 18, 53, 54... (scattered)

0.95 P£e o
. e . .:'. .'.uﬂ"h;

z -'. e o ® o
2 09 o ® 0% ‘oo
E ®@o® ® @ 0
E ° ° °®
= 0.85 ®
t
i¥}
(=W

0.8

@

0 5 10 15 20 25 30 35 40 45 50 55 60
Layer Index

15

. Methods - Stable Flow

« Skipping Non-Vital Layers: Minimal
change to image

« Skipping Vital Layers: Complete
noise, structural collapse, or identity
loss

« Conclusion: Editing should focus on
injecting features into Vital Layers

B Methods - Stable Flow

« Selective Attention Injection
« Vital Layers: Inject features (K, V) from Source
* Preserve Structure & ldentity

* Non-Vital Layers: Generate new features from Edit Prompt
« Function: Allow Semantic Changes

de: de: dqes qey ger ge
>
X —_— key ke, ke, ke; ke, ke, ke
L
¢é"0 Ve, ve; ve; ve; ve
“A photo of a person”
o q ge: qe: Qge; Qe; Qe; —— Qge: Ge; Qe; ge: qe: q
o®
x ke ke, ke, ke, ke, K ke, ke; ke; ke; ke, ke; ke; 4
3:9@8 ve. ve ve ve, . ve; ve ve ve, —
“A photo of a person 1 | 1 |
holding an avocado™ T !
Attention used in non-vial layers Attention used invial layers 1 7

B Methods - Stable Flow

Vital
Layers

a phota of a man haolding an avomda a phota of a man haolding an avomda

Input

Output

Vital Layers: Strong attention to Visual Tokens (Self-preservation)
Non-Vital Layers: Stronger attention to Text Tokens (Prompt adherence)

Injecting into Vital Layers enforces the source image's visual constraints,
while leaving Non-Vital layers to attend to the new text instructions

Non-Vital
Layers

18

. Methods - Stable Flow

Problem: Euler Inversion creates artifacts (u(z;) % u(z;_1))
« Solution: Latent Nudging

« Perturb initial latent 20: Znpew = 20 X 1.15

« Push latent slightly Out-of-Distribution (OOD)
¥) ,;'\ :' .

(a) w/o nudging

(b) w nudging

Input image Reconstruction “Raising its hand”

19

. Methods - Stable Flow

« Capabilities

Non-Rigid Editing
Object Addition
Scene Editing
Style Transfer

“Sviffing the

“Wearing
road”

“Next to an
green glasses” straw hat” avocado”

“Weari gy a

“An otter” “Purivg the “Svowy day”

evening” 2 O

B Methods - Stable Flow

Key Contribution: Automated detection of Vital Layers
Strategy: Inject in Vital, Generate in Non-Vital
Fix for Real Images: Latent Nudging

Limitation: Doesn't differentiate types of editing

21

. Outline

* Authors

« Background

« Stable Flow: Vital Layers Analysis

* FreeFlux: RoPE-Based Mechanism Analysis
* EXxperiments

« Conclusion

22

B Methods - FreeFlux

« Attention Calculation: Attn = Softmaxz(QK?') -V
+ With RoPE: Attn = Softmaz([Qiat, ROPE(Qimg)] - [Kiet; ROPE(Kimg)|T)

« The Conflict: Does the attention mechanism rely on:
Semantic Similarity (Content matching)?
Positional Encoding (RoPE matching)?

23

. Methods - FreeFlux

« Method: Manipulate RoPE during
iInference to see what breaks

* Intervention:
« Keep Q unchanged
« Shift or Remove RoPE from K
* Logic:
« If shifting RoPE ruins the image -> Layer
relies on Position -

« If shifting RoPE has no effect -> Layer
relies on Content

Sampled Image| Remove RoPE Shift (0, 20) Shift (10, 10) Shift (64, 0)

24

B Methods - FreeFlux

Position-Dependent Layers (P-Layers):

Content-Dependent Layers (C-Layers):

Image breaks if ROPE is touched

Role: Structure, Layout, Object Placement.

Indices: e.qg., Layers 1, 2, 4, 26, 30...

Image stable even without RoPE
Role: Texture, Semantics, Appearance.
Indices: e.g., Layers O, 7, 8, 9, 10...

10

20 30
Layer Index

40

r28

26

- 24

PSNR

. Methods - FreeFlux

« |dea: Different editing tasks require manipulating different information

« (Categorization:
« Position-Dependent Editing: Object Addition (Needs to place something new)
« Content-Dependent Editing: Non-Rigid Editing (Change shape but keep texture)
« Region-Preserved Editing: Background Replacement (Keep FG pixels exact)

Non-Rigid Object Movement

Object Addition

B Methods - FreeFlux

« Task: Add a new object
« Strategy: Inject P-Layers
« Keep the original layout (P-Layers), allow C-Layers to generate

« Challenge: Suppression
« Source image has "nothing" at the target spot
« Injecting source features suppresses the new object

27

B Methods - FreeFlux

« Step 1 (Reasoning): Run a
partial sampling step to let PN
the mOdeI "plan" Where the _T’;d;g;i;t;ie_y;;f”__ Attention Sharing in e
new object goes

i “a dog with a i m) Fosition-Dependent Layers HEEEp
« Step 2 (Generation): Restart

fris bee in the yard” Eq (3)
0 N
=10 r'=23 I'=7 T =20 I'=235 =49

* Inside the new object mask: Do
NOT inject source features

¥/ Danoising ®* N Denoising
Outside the mask: Inject source /8 Y o /8 S —_
features oee e Eq (3) -b. . e G LN “fi “fl

28

B Methods - FreeFlux

« Task: Change pose
« Strategy: Inject C-Layers

Change Position
Keep Texture/ldentity

29

B Methods - FreeFlux

« Task: Change background, keep foreground
« Strategy: Value-Only Injection in ALL Layers

« Use SAM-2 or Cross-Attention to mask foreground
 Replace only V for foreground pixels

» Better edge blending than Latent Blending

Source Image | Latent-25 Latent-35 Latent-45 Value-45

. Outline

* Authors

« Background

« Stable Flow: Vital Layers Analysis

* FreeFlux: RoPE-Based Mechanism Analysis
* EXxperiments

« Conclusion

31

. Experiments

Qualitative Results

 Comparison: Stable Flow vs. FreeFlux vs. InstructPix2Pix

* Observation:
Baselines often fail to change pose
FreeFlux (C-Layer injection): Successfully changes pose while keeping fur pattern

32

. Experiments

Qualitative Results
Object Addition

MagicBrush

StableFlow
OmniGen

TamingRF
Ours

“Add a Basket” “Add a Sail” “Add a Hat”
[

. Experiments

Qualitative Results
Non-Rigid Editing

StableFlow Source

TamingRF

OmniGen MagicBrush

Ours

34

“Flying” “Stretching” “Dancing”

. Experiments

Quantitative Results

« Metrics: CLIP-Text (Prompt adherence), CLIP-Image (Structure
preservation)
 Table: Compare Scores

« Stable Flow achieves high balance
* FreeFlux generally outperforms in CLIP-Dir (Directional change accuracy)

Object Addition Non-Rigid Editing Background Replacement
Methods CLIP;yng T CLIPtz¢ T CLIPgir T PR 1 |CLIPimg J CLIPix: T CLIPgi» T PR T |PSNR 1 CLIP¢:: T CLIP4:r T PR T
StableFlow 0.964 0.319 0.173 12.2% | 0.969 0.307 0.124 11.1%| 17.14 0.283 0.123 1.4%
TamingRF 0.958 0.320 0.175 31.9%| 0.961 0.308 0.120 13.2%| 16.32 0.284 0.134 1.9%
MagicBrush| 0.944 0.319 0.161 1.6% 0.933 0.308 0.111 0.5% | 14.87 0.308 0.261 13.0%
OmniGen 0.966 0.314 0.090 35% 0.974 0.303 0.047 1.1% | 21.73 0.291 0.126 2.4%
Ours 0.974 0.321 0.202 50.8% | 0.940 0.315 0.153 74.1% | 24.04 0.328 0319 814%

35

. Experiments
Ablations

« Validation of P vs. C Layers

« Using P-Layers for Non-Rigid editing -> Failure (Image doesn't move).
« Using C-Layers for Object Addition -> Failure (Background changes).
« Conclusion: The mechanistic distinction is correct.

Source Image C Layers All Layers w/o Reasoning Ours Source Image PP Layers All Layers Ours

‘balloon’
‘flapping’

‘jumping’

‘flower crown’

. Outline

* Authors

« Background

« Stable Flow: Vital Layers Analysis

* FreeFlux: RoPE-Based Mechanism Analysis
* EXxperiments

« Conclusion

37

. Conclusions

« Commonality:
 DiT layers are heterogeneous (functionally different).
« Parallel generation + Attention Injection is the way to go.
* Flux requires special handling (Inversion, RoPE).

« Evolution:
« Stable Flow: Empirical discovery ("Some layers are vital").
* FreeFlux: Mechanistic explanation ("Layers differ by RoPE dependence").

38

B Takeaways for DIT Editing

« Don't touch everything: Selective injection is key.
« Position vs. Semantics: Decoupled in Flux via RoPE.

 Pre-computation helps: Reasoning steps (Mask extraction) improve
complex edits.

39

Thank you for Listening!

	幻灯片 0
	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26
	幻灯片 27
	幻灯片 28
	幻灯片 29
	幻灯片 30
	幻灯片 31
	幻灯片 32
	幻灯片 33
	幻灯片 34
	幻灯片 35
	幻灯片 36
	幻灯片 37
	幻灯片 38
	幻灯片 39
	幻灯片 40

