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B Background — UNet vs. DiT

*  UNet Architecture ! e
Distinct Downsampling / Upsampling blocks ! ----------- A e
« Clear separation of semantic levels
« Editing intuition: Manipulate specific decoder layers.

* DiT Architecture: K N

Repeated architecture I T |
. . . N 2 / Feedforward
« No explicit coarse-to-fine structure Linear and Reshape / S
. . g Layer Norm !’ SRl
« Challenge: Where should we inject features for editing? el %
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. Background — Flow Matching vs. Diffusion

« Diffusion: Models curved stochastic paths (SDE)
* Flow Matching: Models straight velocity fields (ODE)
« Faster sampling, better couplings

1
min/ E [[|(X1 — Xo) — v(Xe, t)||*]dt. Xe=tX1+(1-t)Xo, ¢te€l0,1].

. . - -
Linear interpolations Learned vector field



. Background — Flow Matching vs. Diffusion

« SDXL vs. Flux:

« SDXL: Different prompts -> Different layouts/poses
« Flux: Different prompts -> Same layout, only semantic changes

T — ,_?:é =
“A photo of a + “dog wearing + “cat wearing + “casting
dog and a cat...” a blue hat” vellow glasses” shadows”




. Background — Diffusion Transformer

« Patchify: Image — Latent — Patches — Linear Embeddings

« Tokens: Image is treated as a sequence of tokens, similar to NLP
« Self-Attention: Global context interaction at every layer

« Scalability: Performance scales well with compute (FLOPs) and
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. Background — Flux Architecture

 Flow Matching Backbone: Rectified Flow for straighter generation
paths

e Structure:

« Double Blocks (Multi-Stream): Separate processing for Text/Image,
followed by joint attention. (19 blocks in Flux.1-dev)

« Single Blocks (Single-Stream): Concatenated stream sharing same weights.
(38 blocks in Flux.1-dev)

 Huge Parameter Count: ~12B parameters



. Background — Multimodal Diffusion Transformer

Separate Weights: Text and Image
have separate embedding weights

Joint Attention: Text tokens and Image
tokens interact in a unified attention
matrix

Bidirectional: Image attends to Text,
Text attends to Image
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B Background - Rotary Positional Embeddings

* Rotary Positional Embeddings (RoPE)

 Mechanism: Encodes position by rotating query/key vectors

« Feature: Captures relative positions effectively

« In Flux: Applied to both Queries (Q) and Keys (K) at every layer
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. Background — Editing Challenge in DiT

« Attention Injection: A standard technique
for training-free editing

 Copy Key/Value from Source generation
to Target generation

e The Problem:

* Injecting into all layers -> QOver-constrains
(Copies source image exactly)

* Injecting into random layers -> Unstable
results

 Which layers are responsible for preserving
content vs. following prompts?

Result: Exact Copy
(Over-constrained)

Source
Generation |

Key/Value Pairs

The Question:
Which Layers?
(Balance Content vs. Prompt)

Result: Unstable



. Background - Inversion in Flow Models

* Inversion: Mapping a real image back to its initial noise z,
« Euler Inversion: Simply reversing the ODE step

 Problem: Simple inversion in Flux often fails to reconstruct the
iImage perfectly or leads to artifacts during editing



B Motivation - The "Black Box" Dilemma

« Structural Ambiguity
 UNet: Explicit Coarse-to-Fine
« DiIT: Isotropic Architecture

e Research Goal

« Decipher the Layers: Find which specific layers control Structure vs.
Appearance
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. Methods - Stable Flow

 Phenomenon: Changing the
prompt in Flux results in
highly aligned structures

(1) SDXL [67]

* Opportunity: This natural st-
ability simplifies the editing
task

(2) FLUX [47]

(3) Stable Flow

“A photo of a + “dog wearing + “cat wearing + “casting
dog and a cat...” a blue hat” vellow glasses™ shadows™

13




B Methods - Stable Flow

« If alayer is important, skipping it should drastically change the output

* Experiment
« Generate reference image with full model
« Generate ablated image by skipping layer
« Measure Perceptual Similarity (DINOv2)

T 1
vitality(f) = 1—E Z d( My (s, p), M¢(s,p))
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B Methods - Stable Flow

* Findings

Vital layers are sparse

Distributed throughout the network
(not just early or late)

Specific indices for Flux: e.g., Layers
0,1,17, 18, 53, 54... (scattered)
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. Methods - Stable Flow

« Skipping Non-Vital Layers: Minimal
change to image

« Skipping Vital Layers: Complete
noise, structural collapse, or identity
loss

« Conclusion: Editing should focus on
injecting features into Vital Layers




B Methods - Stable Flow

« Selective Attention Injection
« Vital Layers: Inject features (K, V) from Source
* Preserve Structure & ldentity

* Non-Vital Layers: Generate new features from Edit Prompt
« Function: Allow Semantic Changes

de: de:  dqes  qey  ger  ge
>
X —_— key ke, ke, ke; ke, ke, ke
L
¢é"0 Ve, ve; ve; ve; ve
“A photo of a person”
o q ge: qe: Qge; Qe; Qe; —— Qge: Ge; Qe; ge: qe: q
o®
x ke ke, ke, ke, ke, K ke, ke; ke; ke; ke, ke; ke; 4
3:9@8 ve. ve ve ve, . ve; ve ve ve, —
“A photo of a person 1 | 1 |
holding an avocado™ T !
Attention used in non-vial layers Attention used invial layers 1 7



B Methods - Stable Flow

Vital
Layers

a phota of a man haolding an avomda a phota of a man haolding an avomda

Input

Output

Vital Layers: Strong attention to Visual Tokens (Self-preservation)
Non-Vital Layers: Stronger attention to Text Tokens (Prompt adherence)

Injecting into Vital Layers enforces the source image's visual constraints,
while leaving Non-Vital layers to attend to the new text instructions

Non-Vital
Layers
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. Methods - Stable Flow

Problem: Euler Inversion creates artifacts (u(z;) % u(z;_1))
« Solution: Latent Nudging

«  Perturb initial latent 20: Znpew = 20 X 1.15

« Push latent slightly Out-of-Distribution (OOD)
¥ ) ,;'\ :' .

(a) w/o nudging

(b) w nudging

Input image Reconstruction “Raising its hand”
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. Methods - Stable Flow

« Capabilities

Non-Rigid Editing
Object Addition
Scene Editing
Style Transfer

“Sviffing the

“Wearing
road”

“Next to an
green glasses” straw hat” avocado”

“Weari gy a

“An otter” “Purivg the “Svowy day”

evening” 2 O




B Methods - Stable Flow

Key Contribution: Automated detection of Vital Layers
Strategy: Inject in Vital, Generate in Non-Vital
Fix for Real Images: Latent Nudging

Limitation: Doesn't differentiate types of editing
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B Methods - FreeFlux

« Attention Calculation: Attn = Softmaxz(QK?') -V
+ With RoPE: Attn = Softmaz([Qiat, ROPE(Qimg)] - [Kiet; ROPE(Kimg)|T)

« The Conflict: Does the attention mechanism rely on:
Semantic Similarity (Content matching)?
Positional Encoding (RoPE matching)?
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. Methods - FreeFlux

« Method: Manipulate RoPE during
iInference to see what breaks

* Intervention:
« Keep Q unchanged
«  Shift or Remove RoPE from $K$
* Logic:
« If shifting RoPE ruins the image -> Layer
relies on Position -

« If shifting RoPE has no effect -> Layer
relies on Content

Sampled Image| Remove RoPE  Shift (0, 20) Shift (10, 10) Shift (64, 0)
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B Methods - FreeFlux

Position-Dependent Layers (P-Layers):

Content-Dependent Layers (C-Layers):

Image breaks if ROPE is touched

Role: Structure, Layout, Object Placement.

Indices: e.qg., Layers 1, 2, 4, 26, 30...

Image stable even without RoPE
Role: Texture, Semantics, Appearance.
Indices: e.g., Layers O, 7, 8, 9, 10...

10

20 30
Layer Index
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. Methods - FreeFlux

« |dea: Different editing tasks require manipulating different information

« (Categorization:
« Position-Dependent Editing: Object Addition (Needs to place something new)
« Content-Dependent Editing: Non-Rigid Editing (Change shape but keep texture)
« Region-Preserved Editing: Background Replacement (Keep FG pixels exact)

Non-Rigid Object Movement

Object Addition




B Methods - FreeFlux

« Task: Add a new object
« Strategy: Inject P-Layers
« Keep the original layout (P-Layers), allow C-Layers to generate

« Challenge: Suppression
« Source image has "nothing" at the target spot
« Injecting source features suppresses the new object
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B Methods - FreeFlux

« Step 1 (Reasoning): Run a
partial sampling step to let PN
the mOdeI "plan" Where the _T’;d;g;i;t;ie_y;;f”__ Attention Sharing in e
new object goes

i “a dog with a i m) Fosition-Dependent Layers HEEEp
« Step 2 (Generation): Restart

fris bee in the yard” Eq (3)
0 N
=10 r'=23 I'=7 T =20 I'=235 =49

* Inside the new object mask: Do
NOT inject source features

¥/ Danoising ®* N Denoising
Outside the mask: Inject source /8 Y o /8 S —_
features oee e Eq (3) -b. . e G LN “fi “fl

28



B Methods - FreeFlux

« Task: Change pose
« Strategy: Inject C-Layers

Change Position
Keep Texture/ldentity
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B Methods - FreeFlux

« Task: Change background, keep foreground
« Strategy: Value-Only Injection in ALL Layers

« Use SAM-2 or Cross-Attention to mask foreground
 Replace only V for foreground pixels

» Better edge blending than Latent Blending

Source Image | Latent-25 Latent-35 Latent-45 Value-45
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. Experiments

Qualitative Results

 Comparison: Stable Flow vs. FreeFlux vs. InstructPix2Pix

* Observation:
Baselines often fail to change pose
FreeFlux (C-Layer injection): Successfully changes pose while keeping fur pattern
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. Experiments

Qualitative Results
Object Addition

MagicBrush

StableFlow
OmniGen

TamingRF
Ours

“Add a Basket” “Add a Sail” “Add a Hat”
[



. Experiments

Qualitative Results
Non-Rigid Editing

StableFlow Source

TamingRF

OmniGen MagicBrush

Ours

34

“Flying” “Stretching” “Dancing”




. Experiments

Quantitative Results

« Metrics: CLIP-Text (Prompt adherence), CLIP-Image (Structure
preservation)
 Table: Compare Scores

« Stable Flow achieves high balance
* FreeFlux generally outperforms in CLIP-Dir (Directional change accuracy)

Object Addition Non-Rigid Editing Background Replacement
Methods CLIP;yng T CLIPtz¢ T CLIPgir T PR 1 |CLIPimg J CLIPix: T CLIPgi» T PR T |PSNR 1 CLIP¢:: T CLIP4:r T PR T
StableFlow 0.964 0.319 0.173  12.2% | 0.969 0.307 0.124  11.1%| 17.14 0.283 0.123 1.4%
TamingRF 0.958 0.320 0.175  31.9%| 0.961 0.308 0.120  13.2%| 16.32 0.284 0.134 1.9%
MagicBrush| 0.944 0.319 0.161 1.6% 0.933 0.308 0.111 0.5% | 14.87 0.308 0.261 13.0%
OmniGen 0.966 0.314 0.090 35% 0.974 0.303 0.047 1.1% | 21.73 0.291 0.126 2.4%
Ours 0.974 0.321 0.202 50.8% | 0.940 0.315 0.153 74.1% | 24.04 0.328 0319 814%
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. Experiments
Ablations

« Validation of P vs. C Layers

« Using P-Layers for Non-Rigid editing -> Failure (Image doesn't move).
« Using C-Layers for Object Addition -> Failure (Background changes).
« Conclusion: The mechanistic distinction is correct.

Source Image C Layers All Layers  w/o Reasoning Ours Source Image PP Layers All Layers Ours

‘balloon’
‘flapping’

‘jumping’

‘flower crown’
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. Conclusions

« Commonality:
 DiT layers are heterogeneous (functionally different).
« Parallel generation + Attention Injection is the way to go.
* Flux requires special handling (Inversion, RoPE).

« Evolution:
« Stable Flow: Empirical discovery ("Some layers are vital").
* FreeFlux: Mechanistic explanation ("Layers differ by RoPE dependence").
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B Takeaways for DIT Editing

« Don't touch everything: Selective injection is key.
« Position vs. Semantics: Decoupled in Flux via RoPE.

 Pre-computation helps: Reasoning steps (Mask extraction) improve
complex edits.

39



Thank you for Listening!
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