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02 @ Aim and Challenge

B Skeleton-Based Action Recognition:

Action label:
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B Self-Supervised Learning:
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B Contrastive Learning for Skeleton:
B Data augmentation module to generate positive pairs
B Pull positive pairs
B Push negative pairs
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B Challenges:
= Tranditional contrastive learning pipeline cannot benefit from the
strong data augmentation.

Downstream Action Recognition Accuracy
72.90%

70% 65.50%
56.70% #0: Baseline augmentation
50% #1. w/ Random Mask
#2. w/ Drop/Add Edges
30% #3:. w/ Skeleton AdalN

13.20%

10%
#0 #1 #2 #3
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B Challenges:
= Tranditional contrastive learning pipeline cannot benefit from the strong
data augmentation.
m Treating all augmentations equally cause sub-optimal representations.

B Solution:
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B Challenges:
= Tranditional contrastive learning pipeline cannot benefit from the strong

data augmentation.
m Treating all augmentations equally cause sub-optimal representations.

B Solution:
More Strongly Augmented
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B Our Framework Overview:

Gradual Growing Augmentation
Asymmetric Hierarchical Learning

Gradual Growing Augmentation Transformed Data
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Asymmetric Hierarchical Learning
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B Gradual Growing Augmentation
B Divide the all augmentations into different sets.

B Basic Augmentation Set (BA)
B Shear, Temporal Crop

B Normal Augmentation Set (NA)

B Flip, Rotate, Gaussion noise, ...

B Strong Augmentation Set (SA)
B Random Mask
B Drop/Add Edges (DAE)
B Skeleton AdalN
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B Gradual Growing Augmentation
B Divide the all augmentations into different sets.
B Generate multiple positive pairs by applying these
augmentation sets progressively.

More Strongly Augmented
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B Asymmetric Hierarchical Learning
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B Asymmetric Hierarchical Learning
B Hierarchical self-supervised loss

k—1

Ly = Z sim (z;,stopgrad (z;_1))
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B Asymmetric Hierarchical Learning
B Hierarchical self-supervised loss

k—1

Ly = Z sim (z;,stopgrad (z;_1))

=1

B KL divergence as sim(-) function
Dgr (stopgrad(p (z|zi-1)), p (2]2:))
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B Full Model

B Optimization Objective
B InfoNCE loss between the basic positive pair

exp(z - 2'/T)

L"Info — 105‘:’,

B The proposed hierarchical self-supervised loss
k—1

Ly, = Z sim (z;,stopgrad (z;_1))

1=1

B Overall loss
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B Full Model

B Optimization Objective
B InfoNCE loss between the basic positive pair

exp(z - 2'/T)

L"Info — = 105‘:’,
B The proposed hierarchical self-supervised loss

- Self-supervised pretrain for the encoder

Training L= Linfo+ AnLn
process

L Supervised finetune for the classifier L
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B Experiment Settings
m  Unsupervised approaches

- Train the classifier with pretrained encoder fixed.

m  Semi-supervised approaches

- Jointly train classifier and encoder with partial labeled data.

m  Supervised approaches

- Jointly train the classifier and encoder with full labeled data.
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B Datasets
= NTU RGB+D 60 Dataset (NTU 60)[1]

m NTU RGB+D 120 Dataset (NTU 120)[2]
»  PKU Multi-Modality Dataset (PKUMMD)[3]
m PKUMMD part | (Part I)

m  PKUMMD part Il (Part II)

[1] Shahroudy et al. NTU RGB+ D: A large scale dataset for 3D human activity analysis. CVPR 2016.
[2] Liu et al. NTU RGB+D 120: A large-scale benchmark for 3D human activity understanding. TPAMI 2019.

[3] Liu et al. PKU-MMD: A large scale benchmark for skeleton-based human action understanding. Proc. of the Workshop on Visual Analysis in Smart and Connected
Communities 2017.
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B Results on Strong Data Augmentations

Unsupervised Action Recognition Accuracy on NTU 60

77.60% 77.20% 77.30%
72.90%
70% 65.50% #0: Baseline augmentation
56.70% #1:. w/ Random Mask
50% #2: w/ Drop/Add Edges
#3. w/ Skeleton AdalN
30%
13.20% Baseline
10% Ours

#0 #1 #2 #3



18 @ Experiment Results

Unsupervised Approaches Semi-supervised Approaches Supervised Approaches

NTU 60

40 60
Acc.(%) Acc.(%) Acc.(%)

W HICLR(Ours) M AimCLR[2] M SkeletonCLR[1] M HiCLR(Ours) M AimCLR[2] M CrosSCLR[1] ® HiCLR(Ours) M AimCLR[2] M CrosSCLR[1]

[1] Li et al. 3D human action representation learning via cross-view consistency pursuit. CVPR 2021.
[2] Guo et al. Contrastive learning from extremely augmented skeleton sequences self-supervised action recognition. AAAI 2022.
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B Results on Augmentation Arrangement

=1, BA 68.3

k=2. BA.NA 76.8 BA: Basic Aug. Set

=3, BA,NA ,Mask 77.6 NA: Normal Aug. Set
SA: Strong Aug. Set

=3, BA,NA,AdalN 77.3

k: branch number
=3, BA,NA,Drop/Add Edges 7.2
=4, BA,NA,Drop/Add Edges,Mask /7.4

k=4, BA,NA,Drop/Add Edges,AdalN 77.5
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B Skeleton-Based Action Recognition

m  Gradual Growing Augmentation
m  Asymmetric Hierarchical Learning
B Experimental Results

m Impressive results compared with other methods
m  Generalizable in different settings



‘ 2 @ PKU
< ) 7 Spatial and Temporal Restoration, Understanding and Compression

Jiahang Zhang (3K{Efin)
zjh2020@pku.edu.cn

STRUCT: www.wict.pku.edu.cn/struct/




