

Hierarchical Consistent Contrastive Learning for Skeleton-Based Action Recognition with Growing Augmentations

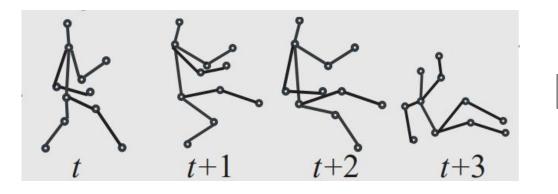
Wangxuan Institute of Computer Technology, Peking University

Jiahang Zhang Lilang Lin Jiaying Liu

2022.12.26

02 Aim and Challenge

Skeleton-Based Action Recognition:



Action label: Fall

Self-Supervised Learning:



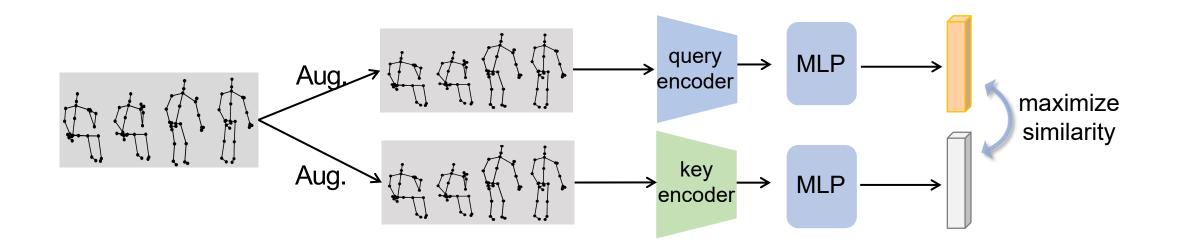
Self-Supervised Pretrain Stage

Supervised Finetune Stage

03 Aim and Challenge

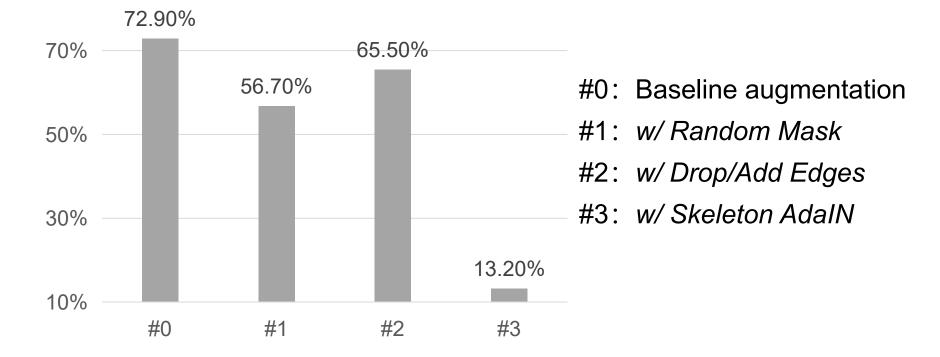
Contrastive Learning for Skeleton:

- Data augmentation module to generate positive pairs
- Pull positive pairs
- Push negative pairs



Challenges:

 Tranditional contrastive learning pipeline cannot benefit from the strong data augmentation.



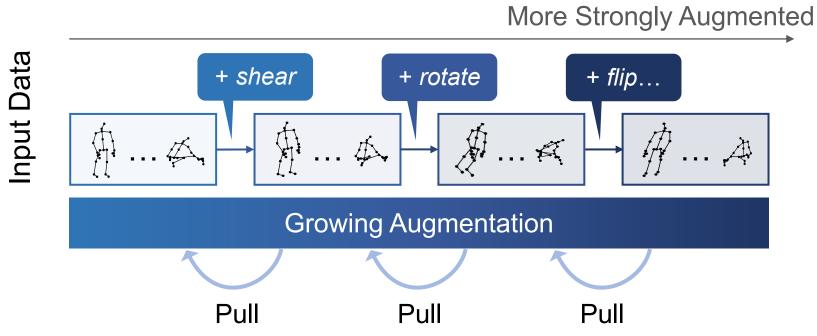
Downstream Action Recognition Accuracy

Challenges:

- Tranditional contrastive learning pipeline cannot benefit from the strong data augmentation.
- Treating all augmentations equally cause sub-optimal representations.
- Solution:

Challenges:

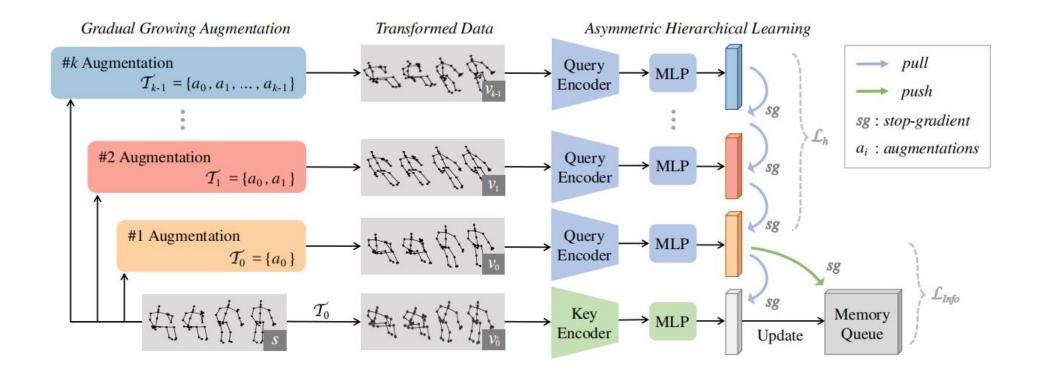
- Tranditional contrastive learning pipeline cannot benefit from the strong data augmentation.
- Treating all augmentations equally cause sub-optimal representations.
- Solution:



07 Proposed Method

Our Framework Overview:

- Gradual Growing Augmentation
- Asymmetric Hierarchical Learning



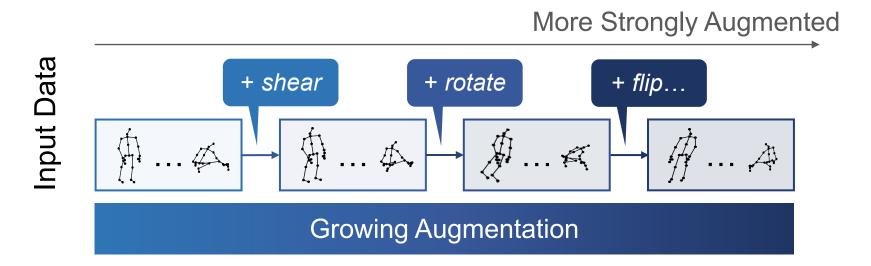
08 **Proposed Method**

Gradual Growing Augmentation

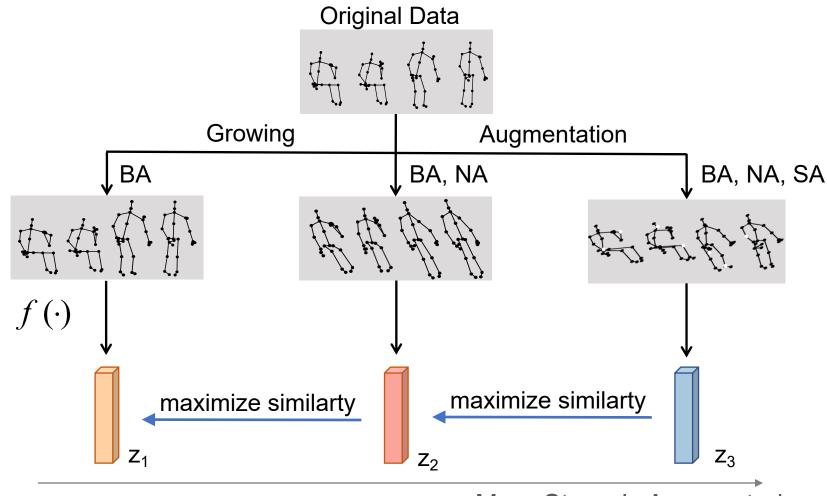
- Divide the all augmentations into different sets.
 - Basic Augmentation Set (BA)
 - Shear, Temporal Crop
 - Normal Augmentation Set (NA)
 - Flip, Rotate, Gaussion noise, ...
 - Strong Augmentation Set (SA)
 - Random Mask
 - Drop/Add Edges (DAE)
 - Skeleton AdalN

Gradual Growing Augmentation

- Divide the all augmentations into different sets.
- Generate multiple positive pairs by applying these augmentation sets progressively.



Asymmetric Hierarchical Learning



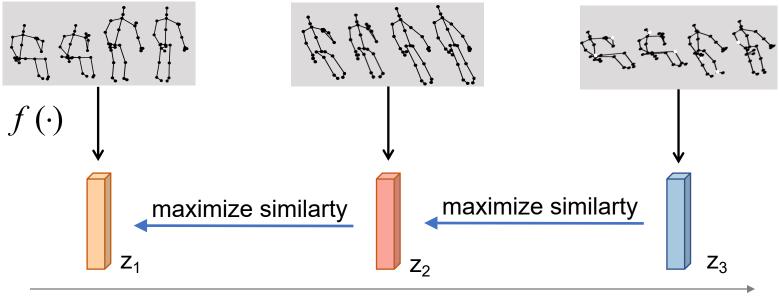
More Strongly Augmented

1 **Proposed Method**

Asymmetric Hierarchical Learning

Hierarchical self-supervised loss

$$\mathcal{L}_{h} = \sum_{i=1}^{k-1} sim\left(z_{i}, stopgrad\left(z_{i-1}\right)\right)$$



More Strongly Augmented

2 **Proposed Method**

Asymmetric Hierarchical Learning

Hierarchical self-supervised loss

$$\mathcal{L}_{h} = \sum_{i=1}^{k-1} sim\left(z_{i}, stopgrad\left(z_{i-1}\right)\right)$$

• KL divergence as $sim(\cdot)$ function

$$D_{KL} \left(\operatorname{stopgrad}(p(z|z_{i-1})), p(z|z_i) \right)$$
$$p(z|z_i) = \frac{\exp(z \cdot z_i/\tau)}{\exp(z'_0 \cdot z_i/\tau) + \sum_{i=1}^M \exp(m_i \cdot z_i/\tau)}$$

Full Model

- Optimization Objective
 - InfoNCE loss between the basic positive pair

$$\mathcal{L}_{Info} = -\log \frac{\exp(z \cdot z'/\tau)}{\exp(z \cdot z'/\tau) + \sum_{i=1}^{M} \exp(z \cdot m_i/\tau)}$$

The proposed hierarchical self-supervised loss

$$\mathcal{L}_{h} = \sum_{i=1}^{k-1} sim\left(z_{i}, stopgrad\left(z_{i-1}\right)\right)$$

Overall loss

$$\mathcal{L} = \mathcal{L}_{Info} + \lambda_h \mathcal{L}_h$$

Full Model

Optimization Objective

InfoNCE loss between the basic positive pair

$$\mathcal{L}_{Info} = -\log \frac{\exp(z \cdot z'/\tau)}{\exp(z \cdot z'/\tau) + \sum_{i=1}^{M} \exp(z \cdot m_i/\tau)}$$

The proposed hierarchical self-supervised loss

Training $\int Self$ -supervised pretrain for the encoder $\mathcal{L} = \mathcal{L}_{Info} + \lambda_h \mathcal{L}_h$ process $\int Supervised finetune for the classifier <math>\mathcal{L}_{cls}$

15 Experiment Results

Experiment Settings

- Unsupervised approaches
 - Train the classifier with pretrained encoder fixed.
- Semi-supervised approaches
 - Jointly train classifier and encoder with partial labeled data.
- Supervised approaches
 - Jointly train the classifier and encoder with full labeled data.

Datasets

- NTU RGB+D 60 Dataset (NTU 60)[1]
- NTU RGB+D 120 Dataset (NTU 120)[2]
- PKU Multi-Modality Dataset (PKUMMD)[3]
 - PKUMMD part I (Part I)
 - PKUMMD part II (Part II)

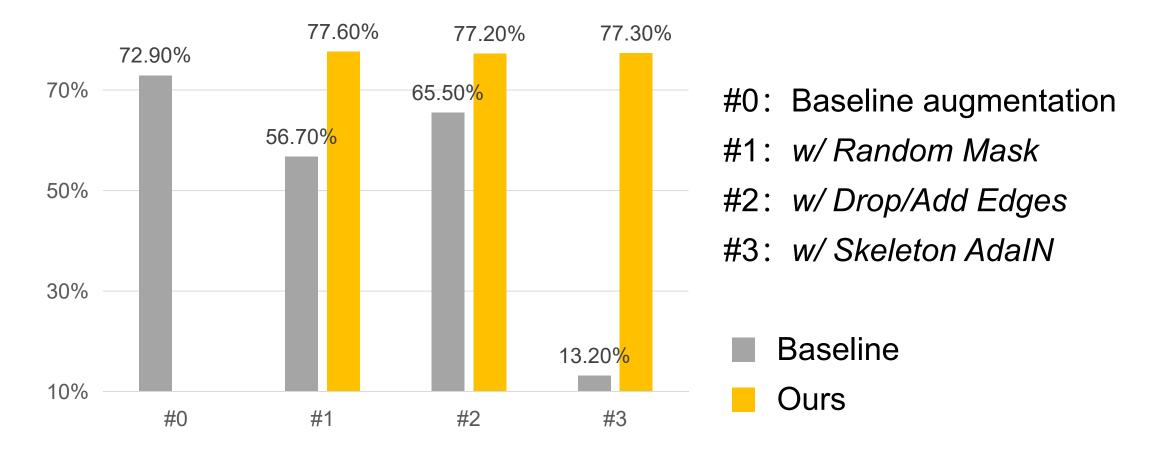
[1] Shahroudy et al. NTU RGB+ D: A large scale dataset for 3D human activity analysis. CVPR 2016.

[2] Liu et al. NTU RGB+D 120: A large-scale benchmark for 3D human activity understanding. TPAMI 2019.

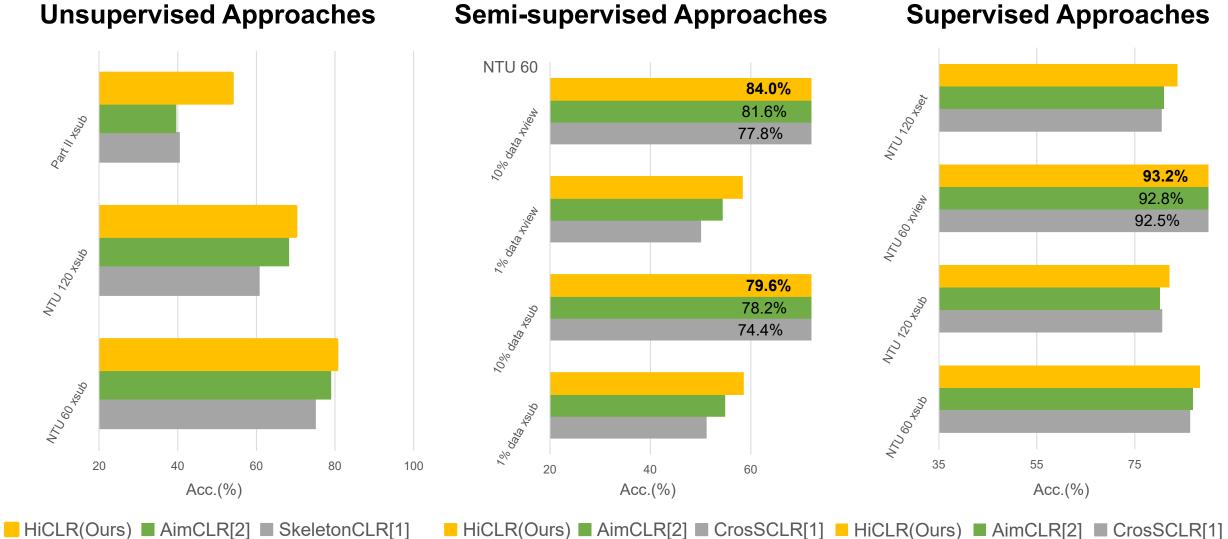
[3] Liu et al. PKU-MMD: A large scale benchmark for skeleton-based human action understanding. Proc. of the Workshop on Visual Analysis in Smart and Connected Communities 2017.

Results on Strong Data Augmentations

Unsupervised Action Recognition Accuracy on NTU 60



Experiment Results 18



[1] Li et al. 3D human action representation learning via cross-view consistency pursuit. CVPR 2021.

[2] Guo et al. Contrastive learning from extremely augmented skeleton sequences self-supervised action recognition. AAAI 2022.

19 Experiment Results

Results on Augmentation Arrangement

Augmentation Arrangement	Acc. (%)
<i>k</i> =1, BA	68.3
<i>k</i> =2, BA,NA	76.8
<i>k</i> =3, BA,NA,Mask	77.6
<i>k</i> =3, BA,NA,AdalN	77.3
<i>k</i> =3, BA,NA,Drop/Add Edges	77.2
<i>k</i> =4, BA,NA,Drop/Add Edges,Mask	77.4
<i>k=4,</i> BA,NA,Drop/Add Edges,AdalN	77.5

BA: Basic Aug. Set NA: Normal Aug. Set SA: Strong Aug. Set *k*: branch number

Skeleton-Based Action Recognition

- Gradual Growing Augmentation
- Asymmetric Hierarchical Learning

Experimental Results

- Impressive results compared with other methods
- Generalizable in different settings

STRUCT @ PKU Spatial and Temporal Restoration, Understanding and Compression

Jiahang Zhang (张佳航) zjh2020@pku.edu.cn

STRUCT: www.wict.pku.edu.cn/struct/

Project

