Controllable Artistic Text Style Transfer via Shape-Matching GAN

Shuai Yang1,2, Zhangyang Wang2, Zhaowen Wang3, Ning Xu3, Jiaying Liu1 and Zongming Guo1

1 Institute of Computer Science and Technology, Peking University \quad 2 Texas A&M University \quad 3 Adobe Research
Problem: Controllable Text Style Transfer

- **Input:** style image, target text, deformation degree ℓ
- **Output:** artistic text
- **Large $\ell \rightarrow$ more **artistry**; less **legibility**: balance?

![Input and Output Diagram](image)

- Input: style image, target text
- Adjust the stylistic degree of glyph
- Controllable output

Parameter ℓ

$0 \rightarrow$ Increasing deformation degree $\rightarrow 1$
Problem: Controllable Text Style Transfer

- Bidirectional shape matching
 - **Backward structure transfer**: prepare training data
 - **Forward structure transfer**: learn shape deformation

![Diagram showing the process of controllable text style transfer with stages and bidirectional shape matching.](image-url)
Aim and Challenge

Problem: Controllable Text Style Transfer

Challenge

- **Limited Data**: one style image to train the network?
- **Controllable**: one network for fast forward multiple scales
05 Proposed Method

● Framework

Stage I: Input preprocessing (Backward Structure Transfer)

- Structure map of Y: Photoshop or image matting
- Train Sketch Module to obtain a sketchy version of X

CHALLENGE I: Limited Data

- Generate training data: random cropping \tilde{X}, X, Y

Input Y → Structure X → Sketch Module G_B → Sketchy structure \tilde{X} → cropping → \tilde{x}, x, y
Backward Structure Transfer (G_B)

- Gaussian blur to maps T and X into a smooth domain
- Train CNN to map the smoothed image back to the text domain

Proposed Method

- Gaussian blur to maps T and X into a smooth domain
- Train CNN to map the smoothed image back to the text domain
Backward Structure Transfer (G_B)

- **CHALLENGE II:** Fast Multi-Scale Transfer
 - The standard deviation of *Gaussian kernel* is controlled by ℓ
Backward Structure Transfer (G_B)

- **CHALLENGE II:** Fast Multi-Scale Transfer
 - Multi-scale training data generation
 - More blurry \rightarrow More sketchy \rightarrow Higher deformation degree

![Style image](image1.png) ![Structure map](image2.png) ![Sketchy Structure map](image3.png)

- Style image
- Structure map
- Sketchy Structure map
Framework

- Stage II: Forward Structure Transfer
 - Conditional image-to-image translation framework
 - Training: learn to map \tilde{x}_ℓ with different deformation degrees back to x
Forward Structure Transfer (G_S)

CHALLENGE II: Fast Multi-Scale Transfer

- **Controllable Resblock**: linear combination of 2 ResBlocks weighted by ℓ
- $\ell = 0/1$: solely deal with greatest / tiniest structure deformation
- $\ell \in (0,1)$: compromise between the two extremes
Forward Structure Transfer (Gₜₛ)

- **Stage II: Forward Structure Transfer**
 - Conditional image-to-image translation framework
 - Test: transfer the shape style of x onto T, producing T_ℓ^X
 - Glyph loss: text legibility preservation
Proposed Method

Stage II: Forward Texture Transfer

- Standard image-to-image translation framework
- Train: learn to map x to y
Forward Texture Transfer (G_T)

- Standard image2image translation framework
 - Test: render the texture in Y onto T^X_{ℓ} to yield the final artistic text T^Y_{ℓ}
 - Style loss: enhance texture details
Framework

Stage I: Input Preprocessing (Backward Structure Transfer)

Stage II: Forward Style (Structure and Texture) Transfer
Comparison with Other Methods

<table>
<thead>
<tr>
<th>Input style</th>
<th>Target text</th>
<th>Image Analogy1</th>
<th>NST2</th>
<th>Doodle3</th>
<th>T-Effect4</th>
<th>UT-Effect5</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin. Image analogies. SIGGRAPH. 2001
3 A. J. Champandard. Semantic style transfer and turning two-bit doodles into fine artworks. Arxiv. 2016
4 S. Yang, J. Liu, Z. Lian, and Z. Guo. Awesome typography: statistics-based text effects transfer. CVPR. 2017
5 S. Yang, J. Liu, W. Yang, and Z. Guo. Context-aware text-based binary image stylization and synthesis. TIP. 2019
Scale-Controllable Style Transfer

Reference style

Target text

Adjusting glyph deformation degree
Scale-Controllable Style Transfer

Reference style

Target text

Adjusting glyph deformation degree
Applications

- **dynamic text generation**
 - By adding random noises
 - By adding interpolated noise

- **diverse structure/texture mixture**

- **stroke-based art design**
Bidirectional Shape Matching
- Training data generation
 - Backward structure transfer
 - Image cropping
- Fast forward multi-scale structure transfer
 - Smoothness-based sketch module
 - Controllable Resblock

Experimental Results
- Impressive results compared with other state-of-the-arts
- Applications
Project

Poster Info:

Poster # 02
Poster 3.1 (Hall B)
Thursday, 10:30 – 13:00