

Controllable Artistic Text Style Transfer via Shape-Matching GAN

Shuai Yang^{1,2}, Zhangyang Wang², Zhaowen Wang³, Ning Xu³, Jiaying Liu¹ and Zongming Guo¹ 1 Institute of Computer Science and Technology, Peking University 2 Texas A&M University 3 Adobe Research

Problem: Controllable Text Style Transfer

- Input: style image, target text, deformation degree ℓ
- Output: artistic text
- Large $\ell \rightarrow$ more **artistry**; less **legibility**: balance?

Problem: Controllable Text Style Transfer

- Bidirectional shape matching
 - Backward structure transfer: prepare training data
 - Forward structure transfer: learn shape deformation

Problem: Controllable Text Style Transfer

Challenge

04

- Limited Data: one style image to train the network?
- Controllable: one network for fast forward multiple scales

Framework

- Stage I: Input preprocessing (Backward Structure Transfer)
 - Structure map of Y: Photoshop or image matting
 - Train Sketch Module to obtain a sketchy version of X
 - CHALLENGE I: Limited Data
 - Generate training data: random cropping \widetilde{X} , X, Y

Backward Structure Transfer (G_B)

- Gaussian blur to maps T and X into a smooth domain
- Train CNN to map the smoothed image back to the text domain

Backward Structure Transfer (G_B)

CHALLENGE II: Fast Multi-Scale Transfer

The standard deviation of Gaussian kernel is controlled by

Backward Structure Transfer (G_B)

CHALLENGE II: Fast Multi-Scale Transfer

- Multi-scale training data generation
- More blurry \rightarrow More sketchy \rightarrow Higher deformation degree

Framework

Stage II: Forward Structure Transfer

- Conditional image-to-image translation framework
- Training: learn to map \tilde{x}_{ℓ} with different deformation degrees back to x

Forward Structure Transfer (G_S)

CHALLENGE II: Fast Multi-Scale Transfer

- Controllable Resblock: linear combination of 2 ResBlocks weighted by *l*
- $\ell = 0/1$: solely deal with greatest / tiniest structure deformation
- $\ell \in (0,1)$: compromise between the two extremes

Forward Structure Transfer (G_S)

- Stage II: Forward Structure Transfer
 - Conditional image-to-image translation framework
 - Test: transfer the shape style of x onto T, producing T_{ℓ}^X
 - Glyph loss: text legibility preservation

Forward Texture Transfer (G_T)

Stage II: Forward Texture Transfer

- Standard image-to-image translation framework
- Train: learn to map x to y

Forward Texture Transfer (G_T)

- Standard image2image translation framework
 - Test: render the texture in Y onto T_{ℓ}^X to yield the final artistic text T_{ℓ}^Y
 - Style loss: enhance texture details

Framework

014

Stage I: Input Preprocessing (Backward Structure Transfer)

Stage II: Forward Style (Structure and Texture) Transfer

Comparison with Other Methods

- ⁴ S. Yang, J. Liu, Z. Lian, and Z. Guo. Awesome typography: statistics-based text effects transfer. CVFR. 2017-
- ⁵ S. Yang, J. Liu, W. Yang, and Z. Guo. Context-aware text-based binary image stylization and synthesis. TIP. 2019

Scale-Controllable Style Transfer

MAPLE

Target text

Scale-Controllable Style Transfer

Reference style

SNOW

Target text

Adjusting glyph deformation degree

legible

Applications

018

dynamic text generation

By adding random noises

By adding interpolated noise

diverse structure/texture mixture

stroke-based art design

Conclusion

Bidirectional Shape Matching

- Training data generation
 - Backward structure transfer
 - Image cropping
- Fast forward multi-scale structure transfer
 - Smoothness-based sketch module
 - Controllable Resblock

Experimental Results

- Impressive results compared with other state-of-the-arts
- Applications

Poster Info:

Poster # 02

Poster 3.1 (Hall B)

Thursday, 10:30 - 13:00

Shuai Yang: http://williamyang1991.github.io

