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Aim and Challenge

‣ Problem:  Translating raw descriptions to corresponding images

Descriptions can be complex and challenging

- descriptions may be abstract.

- descriptions may have multiple meanings which are hard to be 

semantically aligned.

- translated images should be impressive.
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Aim and Challenge

‣ Existing works:

There’s a trilemma among 

- semantically alignment

- open-world words

- image quality

Our work aims at dealing with this trilemma.
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Aim and Challenge

‣ How to deal with these challenges?

Pretrained large scale models!

- challenge of semantics:

Contrastive Language-Image Pretraining (CLIP)

- challenge of image quality:

StyleGAN
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‣ Main Idea: transmit semantics through the pretrained models:

Input Texts 

(1) → CLIP Text Embeddings (CTEs) 

(2) → CLIP Image Embeddings (CIEs) 

(3) → StyleGAN Z Space Embeddings (SEs) 

(4) → Translated Images

Method
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‣ Main Idea: transmit semantics through the pretrained models:

Input Texts 

(1) → CLIP Text Embeddings (CTEs) 

(2) → CLIP Image Embeddings (CIEs) 

(3) → StyleGAN Z Space Embeddings (SEs) 

(4) → Translated Images

Projection (1) and (4) can be done with existing models.

(1): CLIP Text Encoder

(4): Pretrained StyleGAN

Method
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‣ Pipeline: two projections within the latent spaces of the pretrained models.

Method

- text embeddings to image embeddings

- CLIP to StyleGAN
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‣ The First Projection: Text Embeddings to Image Embeddings

Method

CLIP has two latent spaces:

- Text latent space

- Image latent space

Semantically aligned text-image pairs will have embedding 

pairs which have small cosine distances.
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‣ The First Projection: Text Embeddings to Image Embeddings

Method

Due to the character of CLIP, for two pairs 

of matched texts and images, we have:

If we can find a semantically aligned pair of 

representative embeddings, we can project 

input CTEs to corresponding CIES.

(1)
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‣ The First Projection: Text Embeddings to Image Embeddings

Method

The “representative” pair is a prompt pair 

to latent projection. We have:

In practice, we use:

To control the distinctiveness of the 

projection.

(2)

(3)
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‣ The First Projection: Text Embeddings to Image Embeddings

Method

How to find the prompt embeddings?

Because they are “representative”, 

they should have the largest average 

cosine similarity to all the embeddings.

(4)

(5)
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‣ The First Projection: Text Embeddings to Image Embeddings

Method

We can simplify Eqn. 4 as:

which is the equation of a hyperplane. 

z will be biggest at the time of the 

hyperplane (Eqn. 6) and the hypersphere 

(Eqn. 5) are tangent. At this time,

(6)

(7)
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‣ The First Projection: Text Embeddings to Image Embeddings

Method

For images, we can sample a large 

number of images by StyleGAN and 

calculate image prompt embedding 

through Eqn. 7.

For texts, we can simply specify a 

sentence which contains the meaning of 

“general” or “normal” like “A normal 

human face.”.
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‣ The Second Projection: CLIP Embeddings to StyleGAN Embeddings

Method

We build a NN to learn the projection. The training pairs are easy to get.

The network architecture is shown below.
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‣ The Second Projection: CLIP Embeddings to StyleGAN Embeddings

Method

The training loss consists of 3 parts.

Basic constraint of the network:

Semantic consistency loss:

The regularization loss which ensures the predicted SE is in the StyleGAN 

Z space:

The total loss is the combination of the three losses.

(10)

(9)

(8)
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‣ Cartoonlization at Last

Method

In order to use the translation results as illustrations, our pipeline can apply 

a stylization module to convert the realistic images to cartoon images.
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‣ Experiments

- Texts containing only limited words.

- Texts containing open-world words.

- Diverse results on one same text input.

- Non-face results and cartoon results.

- Manipulation results on generated images.

Experiments
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‣ Texts Containing Limited Words:

Our method is based on CLIP which 

can deal with open-world words.

But in order to compare with the 

methods which cannot process open-

world words, we first show the 

translation results containing only the 

words of Multi-Modal CelebA dataset.

Experiments
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‣ Texts Containing Open-World 

Words:

Then, we show the translation 

results containing open-world words. 

This task is more challenging.

Experiments
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‣ Diverse Results for One Single Text

Our method can generate diverse results with one input by taking 

random SEs in certain layers of StyleGAN. The results are shown.

Experiments
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‣ Diverse Results for One Single Text

Our method can also translating non-face images as long as we 

have the corresponding pretrained generative model. 

Experiments
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‣ Manipulation Results on Generated Images

Our method can also be used to manipulate the generated images 

via the equation below:

Experiments

(11)
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‣ Ablation Studies

The ablation consists of 2 parts.

First, we demonstrate the efficiency of the proposed loss functions. 

Experiments
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‣ Ablation Studies

The ablation consists of 2 parts.

Second, we demonstrate the efficiency of the proposed prompts.

Experiments
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‣ A framework to translate raw descriptions into images with high 

semantic consistency, quality and fidelity.

‣ The first to use prompt-based method to project text embeddings 

to image embeddings.

- The method of using prompt embeddings.

- The design of prompt embeddings.

Conclusion
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