How much position information do convolutional neural network encode?

Md Amirul Islam, Sen Jia, Neil D. B. Bruce Ryerson University Vector Institute for Artificial Intelligence

ICML2020 PRESENTER: ZEJIA FAN

STRUCT GROUP SEMINAR

2021/10/21

Outline

- Authors
- Motivation
- Method
- Experiments
- Conclusion

Motivation

- CNN lacks of interpretability
- CNN localization
- Absolute spatial information is important for position-dependent tasks: semantic segmentation, object detection

Motivation

- CNN lacks of interpretability
- CNN localization
- Absolute spatial information is important for position-dependent tasks: semantic segmentation, object detection

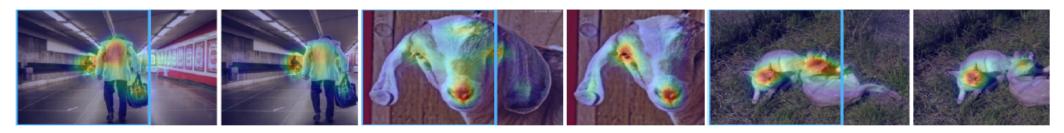
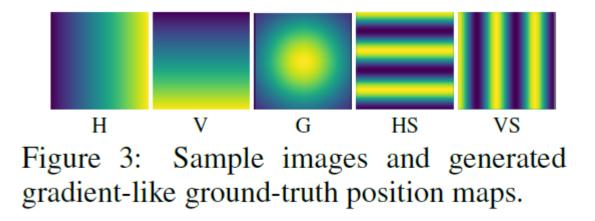


Figure 1: Sample predictions for salient regions for input images (left), and a slightly cropped version (right). Cropping results in a shift in position rightward of features relative to the centre. It is notable that this has a significant impact on output and decision of regions deemed salient despite no explicit position encoding and a modest change to position in the input.

Problem Formulation

Problem Formulation: Given an input image $\mathcal{I}_m \in \mathbb{R}^{h \times w \times 3}$, our goal is to predict a gradient-like position information mask $\hat{f}_p \in \mathbb{R}^{h \times w}$ where each pixel value defines the absolute coordinates of an pixel from left \rightarrow right or top \rightarrow bottom. We generate gradient-like masks $\mathcal{G}_{pos} \in \mathbb{R}^{h \times w}$ (Sec. 2.2) for supervision in our experiments, with weights of the base CNN archetypes being fixed.



Position Encoding Network

- Backbone as ResNet, VGG, weight frozen
- Resize, concate, convolution

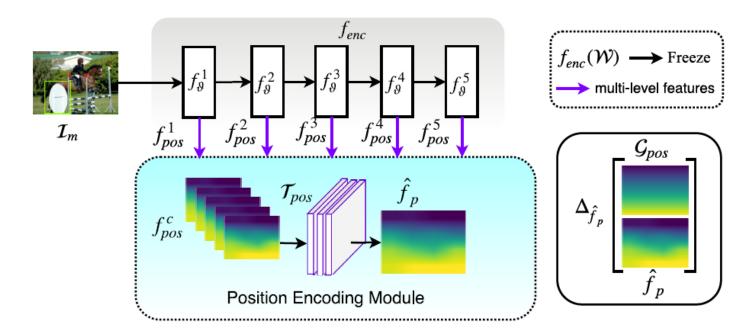
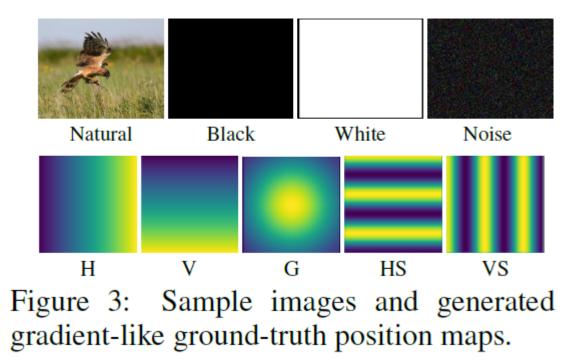


Figure 2: Illustration of PosENet architecture.

Experiment Setting

- Add data content independent case
- Test if contain 2D absolute position information
- MSE loss

$$\Delta_{\hat{f}_p} = \frac{1}{2n} \sum_{i=1}^n (x_i - y_i)^2$$



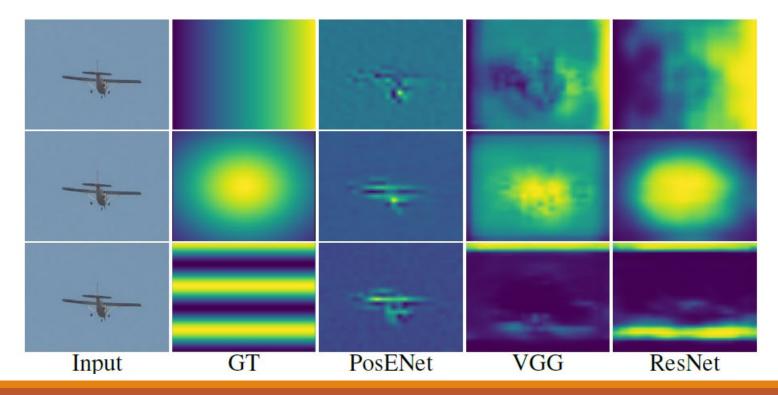
Experiment Results

- SPC for correlation, MAE for Mean Absolute Error
- VGG16, ResNet-152

	Model	PASC	CAL-S	Bl	ack	W	hite	Noise	
	Model	SPC	MAE	SPC	MAE	SPC	MAE	SPC	MAE
	PosENet	.012	.251	.0	.251	0.	.251	.001	.251
Η	VGG	.742	.149	.751	.164	.873	.157	.591	.173
	ResNet	.933	.084	.987	.080	.994	.078	.973	.077
	PosENet	.131	.248	.0	.251	0.	.251	.053	.250
V	VGG	.816	.129	.846	.146	.927	.138	.771	.150
	ResNet	.951	.083	.978	.069	.979	.072	.968	.074
	PosENet	001	.233	.0	.186	0.	.186	034	.214
G	VGG	.814	.109	.842	.123	.898	.116	.762	.129
	ResNet	.936	.070	.953	.068	.964	.064	.971	.055
	PosENet	001	.712	055	.704	0.	.704	.023	.710
HS	VGG	.405	.556	.532	.583	.576	.574	.375	.573
	ResNet	.534	.528	.566	.518	.562	.515	.471	.530
	PosENet	.006	.723	.081	.709	.081	.709	.018	.714
VS	VGG	.374	.567	.538	.575	.437	.578	.526	.566
	ResNet	.520	.537	.574	.523	.593	.514	.523	.545

Experiment Results

- Qualitative results of PosENet based networks corresponding to different ground-truth patterns.



Ablation Study

- Different receptive field
- VGG improves, -PosENet keeps the same

		Layers	Pos	ENet	V	GG		Kernel	Posl	ENet	V
		Layers	SPC	MAE	SPC	MAE		Kerner	SPC	MAE	SPC
		1 Layer	.012	.251	.742	.149		1×1	.013	.251	.542
	Η	$2 {\tt Layers}$.056	.250	.797	.128	Η	3×3	.012	.251	.742
2		$3 {\tt Layers}$.055	.250	.830	.117		7×7	.060	.250	.828
		1 Layer	001	.233	.814	.109		1×1	.017	.188	.724
	G	$2 {\tt Layers}$.067	.187	.828	.105	G	3×3	001	.233	.814
		$3 {\tt Layers}$.126	.186	.835	.104		7×7	.068	.187	.816
·		1 Layer	001	.712	.405	.556		1×1	004	.628	.317
	HS	$2 {\tt Layers}$	006	.628	.483	.538	HS	3×3	001	.723	.405
		$3{\tt Layers}$.003	.628	.491	.540		7×7	.002	.628	.487
			(a)						(ł	o)	

Table 2: Quantitative comparison on the PASCAL-S dataset in terms of SPC and MAE with varying (a) number of layers and (b) kernel sizes. Note that (a) the kernel size is fixed to 3×3 but different numbers of layers are used in the PosENet. (b) Number of layers is fixed to one but we use different kernel sizes in the PosENet.

VGG

MAE

.196

.149

.120

.127 .109

.111

.576 .556

.532

Ablation Study

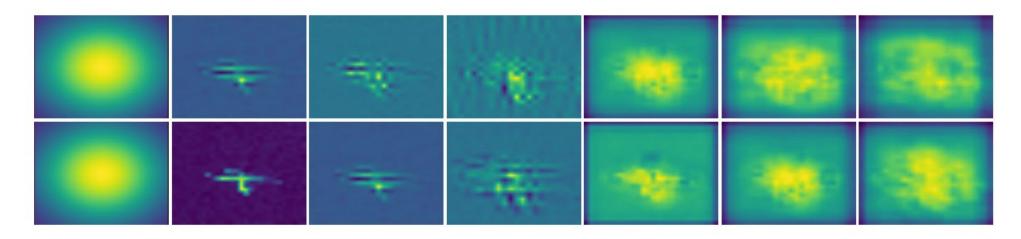


Figure 5: The effect of more Layers (Top row) and varying Kernel Size (bottom row) applied in the PoseNet. Order (left \rightarrow right): GT (G), PosENet (L=1, KS=1), PosENet (L=2, KS=3), PosENet (L=3, KS=7), VGG (L=1, KS=1), VGG (L=2, KS=3), VGG (L=3, KS=7).

Ablation Study

- The power of different layer feature, deeper one encodes more position information.

	Method	f_{pos}^1	f_{pos}^2	f_{pos}^3	f_{pos}^4	f_{pos}^5	SPC	MAE
		\checkmark					.101	.249
			\checkmark				.344	.225
Η	VGG			\checkmark			.472	.203
					\checkmark		.610	.181
						\checkmark	.657	.177
		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	.742	.149
		\checkmark					.241	.182
			\checkmark				.404	.168
G	VGG			\checkmark			.588	.146
					\checkmark		.653	.138
						\checkmark	.693	.135
		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	.814	.109

Table 3: Performance of VGG on natural images with a varying extent of the reach of different feed-forward blocks.

Effect – Zero Padding

- How zero padding affects the position information encoding.

Model]	H	(G	HS		
Widdei	SPC	MAE	SPC	MAE	SPC	MAE	
PosENet	.012	.251	001	.233	001	.712	
PosENet with padding=1	.274	.239	.205	.184	.148	.608	
PosENet with <i>padding</i> =2	.397	.223	.380	.177	.214	.595	
VGG16	.742	.149	.814	.109	.405	.556	
VGG16 w/o. padding	.381	.223	.359	.174	.011	.628	

Table 4: Quantitative comparison subject to padding in the convolution layers used in PosENet and VGG (w/o and with zero padding) on natural images.

			8	ConvNet Configuration						
				A	A-LRN	В	С	D	E	
				11 weight	11 weight	13 weight	16 weight	16 weight	19 weight	
				layers	layers	layers	layers	layers	layers	
	1 1	•	3	216 - 256.06	i	nput (224 \times 2	24 RGB image	e)	e attention	
Effect – Zero Pa	add	110		conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	
	auu	IIIS			LRN	conv3-64	conv3-64	conv3-64	conv3-64	
		U					cpool			
				conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	
How zero padding affect	to the	nogiti	on			conv3-128	conv3-128	conv3-128	conv3-128	
The zero padding affect		positiv		conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
				conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
							conv1-256	conv3-256	conv3-256	
	I						100000000000000000000000000000000000000		conv3-256	
		H		maxpool						
Model				conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
	SPC	MAE	S	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
							conv1-512	conv3-512	conv3-512 conv3-512	
PosENet	.012	.251	(max	pool		CONV3-312	
I OSLIVET		.201	`	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
PosENet with <i>padding</i> =1	.274	.239	.2	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
				20.00000000000000000000000000000000000		7.4 100 000 1000 0000	conv1-512	conv3-512	conv3-512	
PosENet with <i>padding</i> =2	.397	.223	.3						conv3-512	
1 0			.8				rpool			
VGG16	VGG16 .742 .149				FC-4096 FC-4096					
VCC16 m/s madding	201	222	2			200720	1000	.09	1225	
VGG16 w/o. padding	.381	.223	.3				-max		두 @Annus	

Table 4: Quantitative comparison subject to padding in the convolution layers used in PosENet and VGG (w/o and with zero padding) on natural images.

Effect – Zero Padding

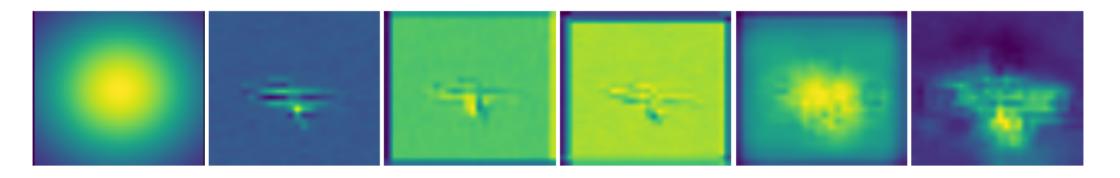


Figure 6: The effect of zero-padding on Gaussian pattern. Left to right: GT (G), Pad=0 (.286, .186), Pad=1 (.227, .180), Pad=2 (.473, .169), VGG Pad=1 (.928, .085), VGG Pad=0(.405, .170).

Error Heat Map

$$\mathcal{L} = \frac{|(\mathcal{G}_{pos}^{h} - \hat{f}_{p}^{h})| + |(\mathcal{G}_{pos}^{v} - \hat{f}_{p}^{v})| + |(\mathcal{G}_{pos}^{g} - \hat{f}_{p}^{g})|}{3}$$



Figure 7: Error heat maps of PosENet (1st row), VGG (2nd row) and ResNet (3rd row).

SOD & SS

- Zero padding effects Saliency object detection and Semantic segmentation.

Model	ECSSD		PASCAL-S		DUT-OMRON		·	Model	mIoU (%)
WIGGET	Fm	MAE	Fm	MAE	Fm	MAE	- -		
VGG w/o padding	.36	.48	.32	.48	.25	.48	-	VGG w/o padding VGG	12.3 23.1
VGG	.78	.17	.66	.21	.63	.18			23.1
	(a)		(b)						

Table 5: VGG models with and w/o zero-padding for (a) SOD and (b) semantic segmentation.

SOD & SS

- Saliency object detection and Semantic segmentation have higher requirements on position information than classification.
- (high-low combination)

	Model	PASCAL-S		BL	ACK	WF	HITE	NOISE	
	WIGGET	SPC	MAE	SPC	MAE	SPC	MAE	SPC	MAE
	VGG	.742	.149	.751	.164	.873	.157	.591	.173
Н	VGG-SOD	.969	.055	.857	.099	.938	.087	.965	.060
	VGG-SS	.982	.038	.990	.030	.985	.032	.985	.033
	VGG	.814	.109	.842	.123	.898	.116	.762	.129
G	VGG-SOD	.948	.067	.904	.086	.907	.085	.912	.077
	VGG-SS	.971	.055	.984	.050	.989	.046	.982	.051
	VGG	.405	.556	.532	.583	.576	.574	.375	.573
HS	VGG-SOD	.667	.476	.699	.506	.709	.482	.668	.489
	VGG-SS	.810	.430	.802	.426	.810	.426	.789	.428

Table 6: Comparison of VGG models pretrained for classification, SOD, and semantic segmentation.

Conclusion

- Absolute position information is implicitly encoded in convolutional neural networks.
- Position information is encoded through zero-padding to some degree.
- High-low combination tasks may rely more on position information.

Thanks for your listening!