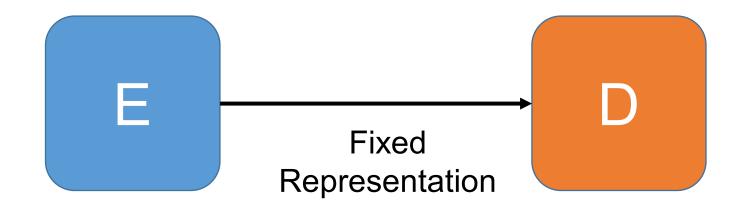


Soft-IntroVAE: Analyzing and Improving the Introspective Variational Autoencoder

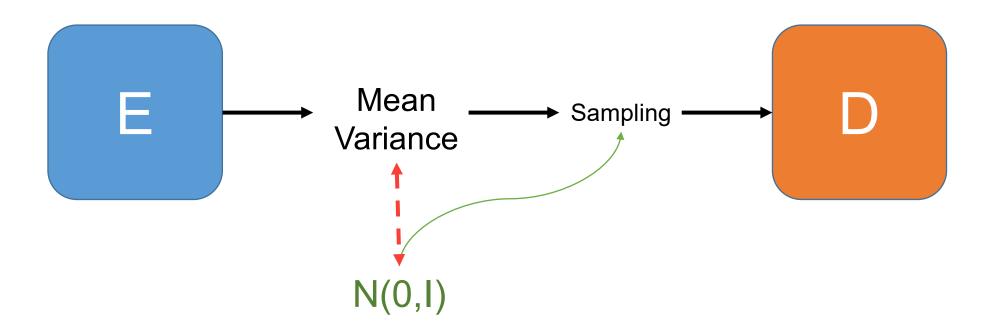
CVPR 2021 (Oral)

Tal Daniel, Aviv Tamar


Department of Electrical Engineering Technion, Haifa, Israel

Outline

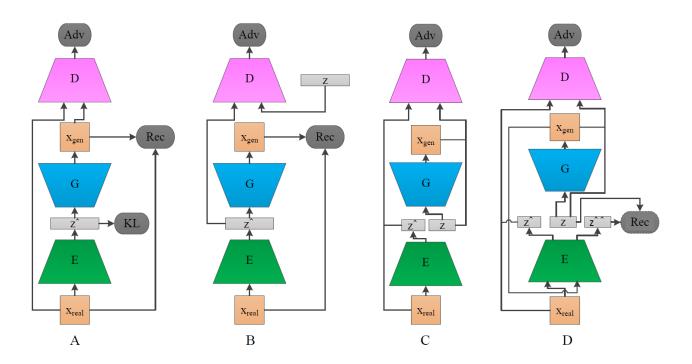
- Background
- Method
- Experiments
- Conclusion


Auto-Encoder

Compression

Varitional Auto-Encoder (VAE)

Generation


ELBO

$\begin{array}{ll} \text{Reconstruction} & \text{Distribution Constraint} \\ \log p_{\theta}(x) \geq \mathbb{E}_{q(z|x)} \left[\log p_{\theta}(x|z) \right] - KL(q(z|x) \| p(z)) \\ \doteq ELBO(x), \end{array} \tag{1}$

Prior (Gaussian)

Hybrid VAE

- VAE is blurry
 - Learning from GAN

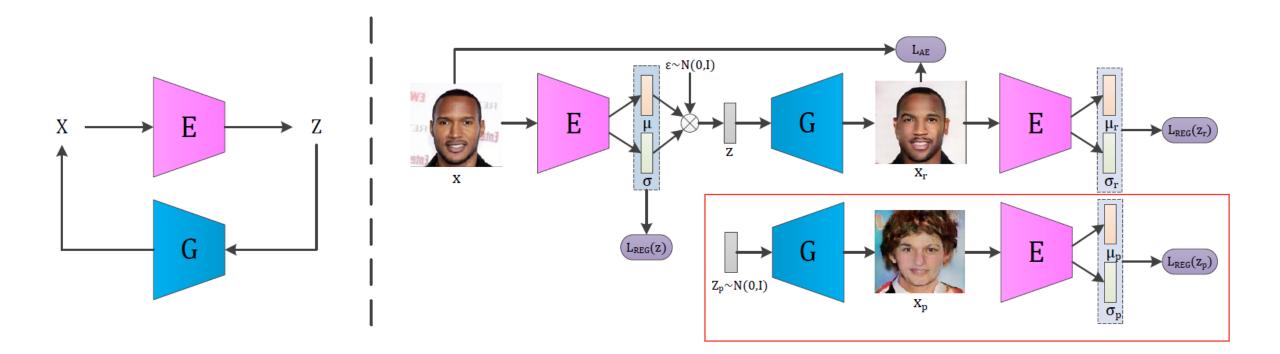
IntroVAE

Real \rightarrow minimizing KL ; Generated \rightarrow maximizing KL

- Encoder: Maximizing KL of generated samples
- Decoder: Fooling the Encoder \rightarrow Generating samples minimizing KL
- Nash equilibrium
 - p_G = p_data

KL between posterior and prior

Encoder


r
$$L_E(x,z) = E(x) + [m - E(G(z))]^+ + L_{AE}(x),$$

Hard Threshold

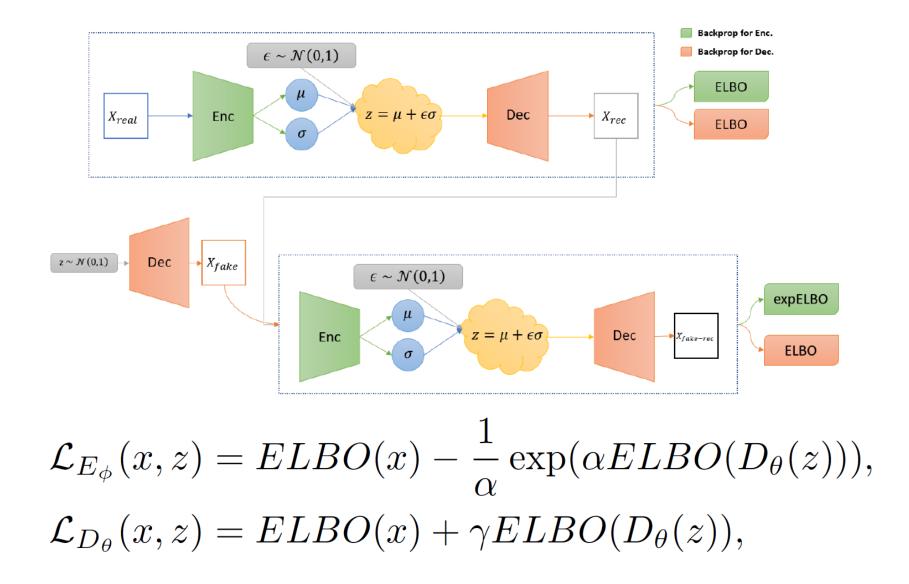
 $L_G(z) = E(G(z)) + L_{AE}(x).$

Decoder

IntroVAE

IntroVAE

Algorithm 1 Training IntroVAE model


1: $\theta_G, \phi_E \leftarrow$ Initialize network parameters 2: while not converged do $X \leftarrow \text{Random mini-batch from dataset}$ 3: $Z \leftarrow Enc(X)$ 4: $Z_p \leftarrow \text{Samples from prior } N(0, I)$ 5: 6: $X_r \leftarrow Dec(Z), X_p \leftarrow Dec(Z_p)$ 7: $L_{AE} \leftarrow L_{AE}(X_r, X)$ 8: $Z_r \leftarrow Enc(ng(X_r)), Z_{pp} \leftarrow Enc(ng(X_p))$ $L_{adv}^E \leftarrow L_{REG}(Z) + \alpha \{ [m - L_{REG}(Z_r)]^+ + [m - L_{REG}(Z_{pp})]^+ \}$ 9: $\phi_E \leftarrow \phi_E - \eta \nabla_{\phi_E} (L_{adv}^E + \beta L_{AE})$ \triangleright Perform Adam updates for ϕ_E 10: $Z_r \leftarrow Enc(X_r), Z_{pp} \leftarrow Enc(X_p)$ 11: $L_{adv}^G \leftarrow \alpha \{ L_{REG}(Z_r) + L_{REG}(Z_{pp}) \}$ 12: $\theta_G \leftarrow \theta_G - \eta \nabla_{\theta_G} (L_{ada}^G + \beta L_{AE})$ 13: \triangleright Perform Adam updates for θ_G 14: end while

Soft-IntroVAE

- IntroVAE is hard to train
 - Can't reproduce
- Soft-IntroVAE
 - Utilizing the complete ELBO term instead of just the KL
 - Replacing the hard threshold with a soft exponential function over the ELBO

$$\mathcal{L}_{E_{\phi}}(x,z) = ELBO(x) - \frac{1}{\alpha} \exp(\alpha ELBO(D_{\theta}(z))),$$

$$\mathcal{L}_{D_{\theta}}(x,z) = ELBO(x) + \gamma ELBO(D_{\theta}(z)),$$

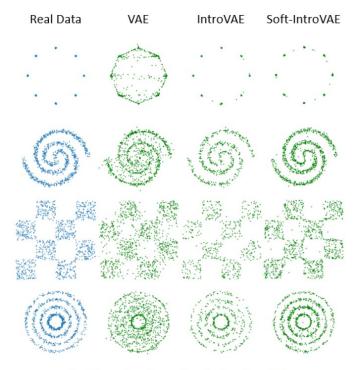
Soft-IntroVAE

Soft-IntroVAE

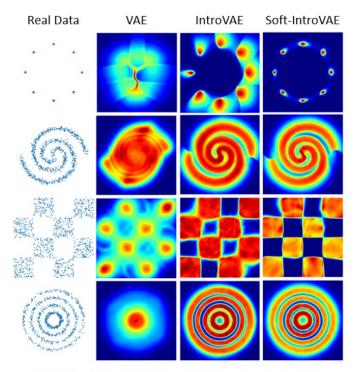
Algorithm 1 Training Soft-IntroVAE (pseudo-code)
Require: $\beta_{rec}, \beta_{kl}, \beta_{neg}, \gamma_r$
1: $\phi_E, \theta_D \leftarrow \text{Initialize}$ network parameters
2: $s \leftarrow 1/\text{input dim}$ \triangleright Scaling constant
3: while not converged do
4: $X \leftarrow \text{Random mini-batch from dataset}$
5: $Z \leftarrow E(X)$ \triangleright Encode
6: $Z_f \leftarrow \text{Samples from prior } N(0, I)$
7: procedure UPDATEENCODER(ϕ_E)
8: $X_r \leftarrow D(Z), X_f \leftarrow D(Z_f)$ \triangleright Decode
9: $Z_{ff} \leftarrow E(X_f)$
10: $X_{ff} \leftarrow D(Z_{ff})$
11: $ELBO \leftarrow s \cdot ELBO(\beta_{rec}, \beta_{kl}, X, X_r, Z)$
12: $\text{ELBO}_f \leftarrow ELBO(\beta_{rec}, \beta_{neg}, X_f, X_{ff}, Z_{ff})$
13: $\exp \text{ELBO}_f \leftarrow 0.5 \exp(2s \cdot \text{ELBO}_f)$
14: $L_E \leftarrow ELBO - expELBO_f \qquad \rhd Eq. 4$
15: $\phi_E \leftarrow \phi_E + \eta \nabla_{\phi_E}(L_E)$ \triangleright Adam update
16: end procedure

procedure UPDATEDECODER(θ_D) 17: $X_r \leftarrow D(Z), X_f \leftarrow D(Z_f)$ 18: \triangleright Decode $Z_{ff} \leftarrow E(X_f)$ 19: $X_{ff} \leftarrow sg(D(Z_{ff}))$ $\triangleright sg: stop-gradient$ 20: 21: ELBO $\leftarrow \beta_{rec} L_{rec}(X, X_r)$ $\text{ELBO}_f \leftarrow ELBO(\gamma_r \cdot \beta_{rec}, \beta_{kl}, X_f, X_{ff}, Z_{ff})$ 22: $L_D \leftarrow s \cdot (\text{ELBO} + \text{ELBO}_f)$ \triangleright Eq. 4 23: $\theta_D \leftarrow \theta_D + \eta \nabla_{\theta_D}(L_D)$ \triangleright Adam update 24: end procedure 25: 26: end while

Analysis

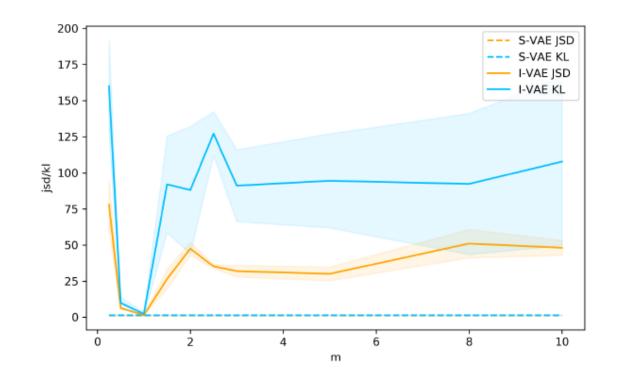

Nash equilibrium

$$d^* \in \underset{d}{\operatorname{arg\,min}} \left\{ KL(p_{data} \| p_d) + \gamma H(p_d(x)) \right\}.$$

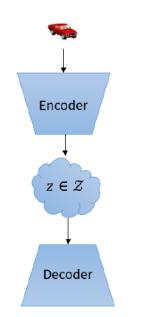

No longer converging to p_data, but regularized by entropy

Math is hard...

2D Toy Dataset


(a) Samples from the trained models.

(b) Density estimation with the trained models.


Training Stability

Probably due to the choice of *m* is sensitive

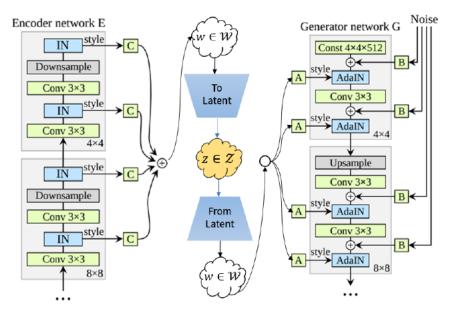


Image Generation

Architectures

Standard Architecture

(c) Style-based Architecture inspired by [46]

Image Generation

Cifar-10

(a) Generated samples (FID: 4.6).

(b) Reconstructions on test data: Left: real, right: reconstruction.

Image Generation

CelebA-HQ and FFHQ datasets

(a) FFHQ dataset – samples from S-IntroVAE (FID: 17.55).

(b) FFHQ – reconstructions.

Image Generation

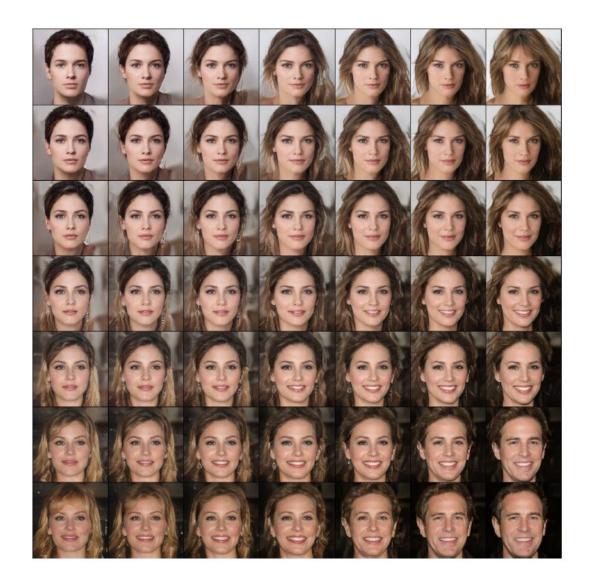
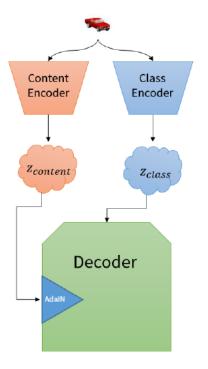
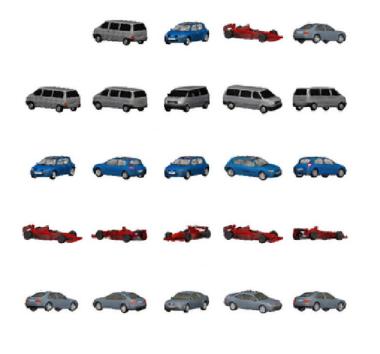

Interpolation in the latent space

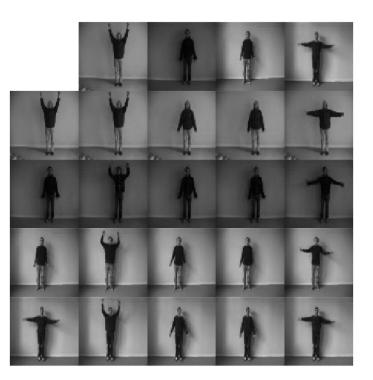
Figure 5: Interpolation in the latent space between two samples from a model trained on CelebA-HQ.


Image Generation

Interpolation in the latent space

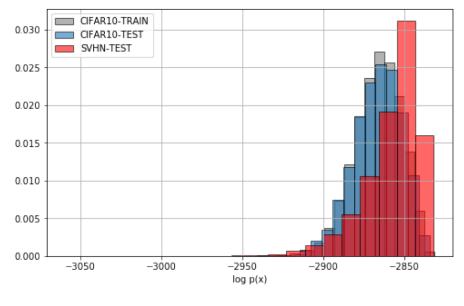

Image Translation

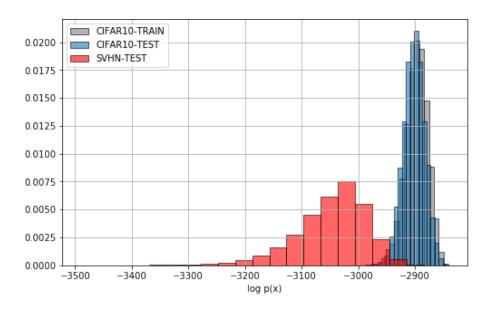
Architectures



Disentanglement Architecture

- Image Translation
 - Cars3D and KTH


Cars3D


KTH

Out-of-Distribution (OOD) Detection

Cifar-10 & SVHN

(a) VAE

(b) Soft-IntroVAE

Conclusion

- Improve the training of IntroVAE
- A deeper theoretical understanding of IntroVAE

Thanks