
Masked Autoencoders Are Scalable Vision Learners

Arxiv 2021

Kaiming He*, Xinlei Chen*, Saining Xie, Yanghao Li, Piotr Doll´ar, Ross Girshick
Facebook AI Research (FAIR)

STURCT-PAPER READING

演示者
演示文稿备注
�



Outline
 Background

 Method

 Experiments

 Conclusion

2



Background

3

Transformer BERT

ViT MAE

NLPCV

MLM Pretrain

Unsupervised



Transformer
 Attention

 Embedding

4



Transformer
 Attention

 Formulation

5



Transformer
 Attention

 Pipeline

6



Transformer
 Attention

 Multi-head Attention
 Concat results of multiple attention module 
 FC to generate final result

 Positional Embedding
 Embed position information (usually sine)
 Embedding = Word Embedding + Positional Embedding
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 Structure
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BERT
 Find a better Representation (Embedding) 
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BERT
 Unsupervised Pretraining

 Task: Masked Language Model
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BERT
 Structure

 Sequential Transformer Encoder
 That’s why Bi-directional
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ViT
 Structure
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BEiT
 Structure
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MAE
 Structure
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Question
 What makes masked autoencoding different between vision 

and language?
 Transform Structure matters
 Information Density Gap

 BERT: mask few words
 MAE: drop a lot of patches (~75%)

 Decoder Design
 NLP: reconstruct words semantic

• Decoder can be trivial (like MLP)

 CV: reconstruct pixels  less semantic
• Decoder is more important
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Details
 Encoder

 Only takes unmasked patches

 Decoder
 Take all patches
 Light-weight (far smaller than encoder)
 Only used in pretraining stage

 Reconstruction Target
 MSE on masked patches
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Visual Results
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Quantitive Results
 Compared to Self-supervised
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Good and Scalable



Quantitive Results
 Compared to Supervised
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Properties
 Mask Ratio
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Ablation Study
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Transfer Learning
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Conclusion
 Simple Masked Autoencoder works

 Rethinking Model or Data

 Effective Training Tricks and Well-organized paper
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