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BACKGROUND

[1] https://ankeshanand.com/blog/2020/01/26/contrative-self-supervised-learning.html
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BACKGROUND

➤ SimCLR

[1] A Simple Framework for Contrastive Learning of Visual Representations (ICML20)
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BACKGROUND

➤ MoCo

[1] Momentum Contrast for Unsupervised Visual Representation Learning (CVPR20)
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BACKGROUND

[1] Momentum Contrast for Unsupervised Visual Representation Learning (CVPR20)
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BACKGROUND

[1] Unsupervised Learning of Visual Features by Contrasting Cluster Assignments (NeurIPS20)



➤ Infomin

15

BACKGROUND

[1] What makes for good views for contrastive learning (NeurIPS20)
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BACKGROUND

[1] What makes for good views for contrastive learning (NeurIPS20)
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BACKGROUND

[1] Bootstrap Your Own Latent A New Approach to Self-Supervised Learning (NeurIPS20)
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Figure 2: BYOL’s architecture. BYOL minimizes a similarity loss between q✓(z✓) and sg(z0⇠), where ✓ are the trained
weights, ⇠ are an exponential moving average of ✓ and sg means stop-gradient. At the end of training, everything
but f✓ is discarded, and y✓ is used as the image representation.

augmentations t ⇠ T and t0 ⇠ T 0. From the first augmented view v, the online network outputs a representation

y✓ =� f✓(v) and a projection z✓ =� g✓(y). The target network outputs y0⇠ =� f⇠(v0) and the target projection

z0⇠ =� g⇠(y0) from the second augmented view v0. We then output a prediction q✓(z✓) of z0⇠ and `2-normalize both
q✓(z✓) and z0⇠ to q✓(z✓) =� q✓(z✓)/kq✓(z✓)k2 and z0⇠ =� z0⇠/kz0⇠k2. Note that this predictor is only applied to the
online branch, making the architecture asymmetric between the online and target pipeline. Finally we define the
following mean squared error between the normalized predictions and target projections,5

L✓,⇠ =�
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��2
2
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·
��z0⇠
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2
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We symmetrize the loss L✓,⇠ in Eq. 2 by separately feeding v0 to the online network and v to the target network to
compute eL✓,⇠. At each training step, we perform a stochastic optimization step to minimize LBYOL

✓,⇠ = L✓,⇠ + eL✓,⇠

with respect to ✓ only, but not ⇠, as depicted by the stop-gradient in Figure 2. BYOL’s dynamics are summarized as

✓  optimizer
�
✓,r✓LBYOL

✓,⇠ , ⌘
�
, (3)

⇠  ⌧⇠ + (1� ⌧)✓, (1)

where optimizer is an optimizer and ⌘ is a learning rate.

At the end of training, we only keep the encoder f✓; as in [9]. When comparing to other methods, we consider the
number of inference-time weights only in the final representation f✓. The full training procedure is summarized in
Appendix A, and python pseudo-code based on the libraries JAX [64] and Haiku [65] is provided in in Appendix J.

3.2 Intuitions on BYOL’s behavior

As BYOL does not use an explicit term to prevent collapse (such as negative examples [10]) while minimizing
LBYOL

✓,⇠ with respect to ✓, it may seem that BYOL should converge to a minimum of this loss with respect to (✓, ⇠)
(e.g., a collapsed constant representation). However BYOL’s target parameters ⇠ updates are not in the direction of
r⇠LBYOL

✓,⇠ . More generally, we hypothesize that there is no loss L✓,⇠ such that BYOL’s dynamics is a gradient descent
on L jointly over ✓, ⇠. This is similar to GANs [66], where there is no loss that is jointly minimized w.r.t. both
the discriminator and generator parameters. There is therefore no a priori reason why BYOL’s parameters would
converge to a minimum of LBYOL

✓,⇠ .

While BYOL’s dynamics still admit undesirable equilibria, we did not observe convergence to such equilibria in our
experiments. In addition, when assuming BYOL’s predictor to be optimal6 i.e., q✓ = q? with

q? =� arg min
q

E
h��q(z✓)� z0⇠

��2
2

i
, where q?(z✓) = E

⇥
z0⇠|z✓

⇤
, (4)

5While we could directly predict the representation y and not a projection z, previous work [8] have empirically shown that
using this projection improves performance.

6For simplicity we also consider BYOL without normalization (which performs reasonably close to BYOL, see Appendix F.6)
nor symmetrization
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BACKGROUND

[1] Exploring Simple Siamese Representation Learning (CVPR21)
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BACKGROUND

[1] Exploring Simple Siamese Representation Learning (arXiv 2020)
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BACKGROUND

[1] Exploring Simple Siamese Representation Learning (arXiv 2020)
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BACKGROUND

[1] Hard negative mixing for contrastive learning (NeurIPS20) 

Creating convex linear 
combinations of pairs of its 
“hardest” existing negatives
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PROPOSED METHOD

➤ Differing from data augmentation, feature-level data manipulation 

➤ Proposed strategies: 

• Positive extrapolation • Negative interpolation
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PROPOSED METHOD

➤ Motivation: visualization of contrastive learning 

• Preliminaries 

• Cos similarity:  one score             and  K scores 
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PROPOSED METHOD

➤ Motivation: visualization of contrastive learning 

• Score distribution visualization 

• Factor: m for momentum 

• Target 1: Mean of pos/neg scores (indicating the approximate 
average of the pos/neg pair distance) 

• Target 2: Variance of negative scores (indicating the fluctuation 
degree of the negative samples in the memory queue)
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PROPOSED METHOD

➤ Motivation: visualization of contrastive learning 

• Conclusion 

• [Positive] In the guarantee of stable and smooth score distribution 
and gradient, we can adopt some feature transformation methods 
which create hard ones by decreasing easy positive scores 

• [Negative] We need to prepare negative pairs that can maintain the 
stability and smoothness of score distribution and gradient for the 
training process
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➤ Motivation 

➤ Detailed Method
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PROPOSED METHOD

➤ Feature Transformation 

• Draw the positive pair                        closer 

• Pushing away negative pairs 

• Positive extrapolation: increase the hardness 

• Negative interpolation: increase the diversity
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PROPOSED METHOD

➤ Positive 

• Weighted addition 

•
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➤ Positive
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PROPOSED METHOD

➤ Positive 

• Why not extrapolation?
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➤ Negative



47

PROPOSED METHOD

➤ Discussions 

• What if extending memory queue instead of FT 

• When to add FT? 

• Dimension-level mixing rather than linear mixup? 

• Could the gains brought by FT vanish if training longer?



48

PROPOSED METHOD

➤ Discussions 

• What if extending memory queue instead of FT



49

PROPOSED METHOD

➤ Discussions 

• When to add FT?



50

PROPOSED METHOD

➤ Discussions 

• When to add FT?



51

PROPOSED METHOD

➤ Discussions 

• Dimension-level mixing rather than linear mixup?



52

PROPOSED METHOD

➤ Discussions 

• Could the gains brought by FT vanish if training longer? 

• 200 epoch: 75.6% → 78.3% 

• 500 epoch: 80.7% → 81.5% 

• Longer training minimizes the improvement over the baseline
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EXPERIMENTAL RESULTS

➤ ImageNet-100
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EXPERIMENTAL RESULTS

➤ ImageNet-1000 and Fine-Grained Classification
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EXPERIMENTAL RESULTS

➤ Object Detection
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CONCLUSION

➤ Feature-level data manipulation 

• Visualization scheme for pos/neg score distribution 

• Extrapolation of positives 

• Interpolation among negatives


