Poisson Flow Generative Models

Yilun Xu*, Ziming Liu*, Max Tegmark, Tommi Jaakkola

NeurIPS 2022

STRUCT Group Seminar
Presenter: Wenjing Wang
2022.10.30



OUTLINE

» Authorship

» Background
» Method

» Experiments

» Conclusion



BACKGROUND

Denoising Diffusion Probabilistic Model (NIPS-20)



BACKGROUND

» Denoising diffusion probabilistic model

« Noising process:

A = \/1 — PiXi_q + \/E’Zi—la Zi_1 ~id A(0,I)

« T-time conditional transition:

Q(xtlxo) — /V(Xt; \/EtXOa (I - C_{t)I)

[
where o, =1 —f, and a, = I IaS
s=1

Denoising Diffusion Probabilistic Model (NIPS-20)



BACKGROUND

» Score-based generative model

« DDPM'’s noising process:

A = \/1 — PiXi_q + \/E’Zi—la Zi_1 ~id A(0,I)

« Markov Chian turns to stochastic process if time continues:

dX, = — % BOX.dt +/BDdW,

where W is an independent Weiner process

Based on An Introduction to Diffusion Models by Weijian Luo
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BACKGROUND

» Score-based generative model

« DDPM’s t-time conditional transition:

Q(xtlxo) — ./V(.Xt; \/Et-x()a (1 - C_lt)I)

e Markov Chian turns to stochastic process if time continues:

QOt(x(t) |X(O)) — ,/V(X(I); x(())e_%f(t) ﬂ(s)dS, I — Ie—f(t) ,B(S)dS)

If J p(s)ds - + oo, t — T then qot(x(t) | x(0)) = A(x(2); 0, I)
0

Based on An Introduction to Diffusion Models by Weijian Luo
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BACKGROUND

» Score-based generative model

« How to reverse above stochastic process?

« Consider a general forward diffusion process,
dX, = (X, )dt + g(t)dW,

« There exits a reverse stochastic process which share the same marginal
distribution as the forward one

dX, = [f(X,,1) — g(1)*V, log p(X)1dt + g()dW,

Based on An Introduction to Diffusion Models by Weijian Luo
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BACKGROUND

» Score-based generative model

Forward SDE (data — noise)

dx = f(x,t)dt + g(t)dw

oE

score function
= |f(x,t) — g t{Vx log p; xﬂ] dt + g(t)dw

Reverse SDE (noise — data)

Score-Based Generative Modeling Through Stochastic Differential Equations (ICLR-21) s



BACKGROUND
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Data Forward SDE Prior Reverse SDE Data

2(0) dz = f(z,t)dt + g(t)dw >@— dz = [f(z,t) — ¢*(t)V. log pt (2)] dt + g(t)dw

Score-Based Generative Modeling Through Stochastic Differential Equations (ICLR-21) ”
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METHOD

> “Poisson flow” generative model (PFGM)

e Motion in a viscous fluid transtorms any planar charge distribution into
a uniform angular distribution.

z A positive charge with z > 0, move
in the direction of their repulsive
force, eventually crossing an
imaginary hemisphere of radius r.

If the the original charge
distribution is let loose just above
z = 0, it will cause a uniform

distribution for r — 0.
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METHOD

> “Poisson flow” generative model (PFGM)
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METHOD - BACKGROUND

» Poisson equation

where A is the Laplace operator
f and ¢ are real or complex-valued functions on a manifold

« Usually, f isgiven and ¢ 1is sought

 Euclidean space: Vzgo = f
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METHOD - BACKGROUND
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» Poisson equation

Poisson equation Let x ¢ RY and p(x) : RY — R be a source function. We assume that the source
function has a compact support, p € C° and N > 3. The Poisson equation is

Vio(x) = -p(x), (1)

where ¢(x) : RY — R is called the potential function, and V? = Zf\__’ 1 88—; is the Laplacian operator.

It is usually helpful to define the gradient field E(x) = —V¢(x) and rewrite the Poisson equation as
V - E = p, known in physics as Gauss’s law [11].
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METHOD - BACKGROUND
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» Poisson equation
Vip(x) = —p(x). (1)

« With zero boundary condition at infinity, Eq. (1) admits a unique
simple integral solution

1 1

2
(N_Q)SN_l(l) ||X_y||N—2’ (2)

o(x) = [ Cooy)p(y)dy, Gxy)=

where Sy_1(1) is a geometric constant representing the surface area of the unit (N — 1)-sphere °,
and G(x,y) is the extension of Green’s function in N-dimensional space (details in Appendix A.3).
The negative gradient field of (x), referred as Poisson field of the source p, is

B(x) =-Ve(x) == [ Gxy)p(y)dy, VxG(x.y)=-

1 X -y

: 3
Sn-1(1) [[x-y|[N )
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METHOD - BACKGROUND
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B(x) = -V(x) == [ 7xG(x.¥)p(y)dy,

1 X -y
Sn-1(1) [[x-y|[V

VXG(X, Y) -~

« —E(x) points towards sources

It is straightforward to check that when p(x) - d(x —y), we get
p(x) > G(x,y) and E(x) - -V4G(x,y). This implies that G(x,y) and -VxG(x,y) can be
interpreted as the potential function and the gradient field generated by a unit point source, e.g.,
a point charge, located at y. When p(x) takes general forms but has bounded support, simple
asymptotics exist for |[x|| > ||y]||. To the lowest order, E(x) = V5 G(x,y)|y=0 ~ x/||x||"¥ behaves as
if it were generated by a unit point source at y = 0. In physics, the power law decay is considered to
be long-range (compared to exponential decay) [11].
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METHOD - HOW TO DRAW SAMPLES
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. Since —E(x) points towards sources, the backward ODE E

will take samples close to the sources.
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METHOD - HOW TO DRAW SAMPLES

]
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X
. Since —E(x) points towards sources, the backward ODE E

will take samples close to the sources.
« But, the backward ODE has the problem of mode collapse

« 2D plane: points towards

. No augmentation (2D)
the center of the disk O
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METHOD - HOW TO DRAW SAMPLES

dx
. Since —E(x) points towards sources, the backward ODE E
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will take samples close to the sources.

« But, the backward ODE has the problem of mode collapse

Augmentation (3D)
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METHOD - HOW TO DRAW SAMPLES

The gravitational field in which the \\\ \ \ \\ \ l l j / / / ,/ / / J/
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https://spaces.ac.cn/archives/9305
Thanks to Lilang Lin for introducing this blog
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METHOD - HOW TO DRAW SAMPLES

 Solve the Poisson equation in an augmented space

= (x,z) e RVH

For training data: z = 0

« With z, the Poisson field becomes:

vx e RV E(X) = -Vp(X) = SN(l) f . HN+1P(Y)dY

e The associated forward/backward ODEs:

dx/dt = E(X),dx/dt = -E(X)
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METHOD - HOW TO DRAW SAMI

Solve the Poisson equation in an augmented

high
X = (x,2) e RVH H

For training data: z = 0

density /[

With z, the Poisson field |

Define trajectories of particles between the z = 0
hyperplane and an enclosing hemisphere

vk e RV E(x) = -

The associated forward/backward ODEs:

dx/dt = E(x),dx/dt = -E(X)
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METHOD - HOW TO DRAW SAMPLES

« Backward ODE defines a transformation between the uniform

distribution on an infinite hemisphere and the data distribution p(x) in
the z=0 plane

Theorem 1. Suppose particles are sampled from a uniform distribution on the upper (z > 0) half
of the sphere of radius r and evolved by the backward ODE % = —E(X) until they reach the z = 0

hyperplane, where the Poisson field E(X) is generated by the source p(X). In the r — oo limit, under

some mild conditions detailed in Appendix A, this process generates a particle distribution p(Xx), i.e.,
a distribution p(x) in the z = 0 hyperplane.

o Starting from an infinite hemisphere, one can recover the data
distribution p by following the inverse Poisson field —E(x)

28



METHOD - LEARNING

« With z, the Poisson field becomes:

Vi e RV B(R) = V() = g [ e n(9)d

» Given a set of training data D = {x;},_, 1.i.d sample from p(x)

« Define the empirical version of the Poisson field:

~

)=o) g v

C(i) = 1/ Z?zl ||5c_5'(1||ﬁ+1
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METHOD - LEARNING

« Sample points inside the hemisphere by perturbing the augmented
training data

y=X+ || ex || (1 +7)"u, z=|e,|(1+7)™
where € = (ex,€.) ~ N(0,0%Ins1xn41), u ~U(SN (1)), m ~U[0, M]

M, o, and 1 are hyper-parameters

« With fixed € and u, the added noise increases exponentially with m.

- Points farther away from the data support play a less important role
in generative modeling



METHOD - LEARNING

o Further normalize the field to resolve the variations
v(x) = ~VNE(X)/|| E(x) |2

Trajectories of its forward/backward ODEs are invariant under
normalization

e Mini-batch data: B = {xz}lgl
e Uniformly sample m in [0, M] for each data
e M is large (around 300) to ensure reaching a large enough hemisphere

e Training Loss: B

L(0) = |B‘ Z | fo(yi) —vB, (¥i) ”2
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METHOD - LEARNING

o Further normalize the field to resolve the variations
v(x) = —~VNEX)/| E(%) |2

Trajectories of its forward/backward ODEs are invariant under
normalization

e Mini-batch data: B = {xz}“g|

e Uniformly sample m 1

Use a larger batch for the estimation of normalized
IRV SCREVCLHEW eI  ficld since the empirical normalized field is biased

e Training Loss: B

L(0) = | Z | fo(yi) —vB, (¥i) ”2
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METHOD - LEARNING

Algorithm 1 Learning the normalized Poisson Field

Input: Training iteration 7', Initial model fy, dataset D, constant v, learning rate 7.

fort=1...7T do 5
Sample a large batch By, from D and subsample a batch of datapoints B = {xz}lzzl1 from By,
Simulate the ODE: {y; =perturb(x; ) }'le |1

Calculate the normalized field by Br: vg, (¥:) = -V NEg, (,)/(| Es, () |2 +7), Vi
B ~ ~
Calculate the loss: £(0) = ﬁ Z!L-:'l | fo(y:) —va, (¥:) |I3

Update the model parameter: 0 = 0 —nV .L(0)
end for
return fy

Algorithm 2 perturb(x)

Sample the power m ~ U[0, M |

Sample the initial noise (ex,€.) ~ N'(0,0° I N41)x(N+1))
Uniformly sample the vector from the unit ball u ~ U (Sy (1))
Construct training pointy = X+ || €x || (1 +7)™u, z = |e.[(1 + 7)™
return y = (y, 2)
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METHOD - EQUIVALENT BACKWARD ODE

» An equivalent backward ODE that allows for exponentially decay on z

« Sample from the data distribution by the backward ODE
dx = —v(x)dt

« The boundary condition of the above ODE is unclear:

The starting and terminal time t are both unknown
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METHOD - EQUIVALENT BACKWARD ODE

« An equivalent backward ODE

dx dt
dt dz

v(X)x, v(X), are the corresponding components of x, z in vector v(X)

d(X, Z) = _(

dz,dz) = —(v(X)xv(X):1, 1)dz

« When z = 0, we arrive at the data distribution

« We can freely choose a large as the starting point

Zmax

35



METHOD - EQUIVALENT BACKWARD ODE

 The distribution on the 7 = z,, . hyperplane is no longer uniform

« We derive the prior distribution by radially projecting uniform

distribution on the hemisphere with radiusr =z, . tothez =173,
hyperplane:
22&;1 2Zmax
pprior(x) ~ 2 o NNl 2 o DNl
SN (zZmax) (|| X (|5 +25ax) 2 SN x (|5 +25ax) 2

where S (r) is the surface area of /NV-sphere with radius 7.



METHOD - EQUIVALENT BACKWARD ODE

Projection of the sphere onto the

t=T plane t
A
When B and D are very close |
X .
IBC|  |0B]  /Ix|> + T2 A ] B C
IBD|  |OA| T
v
x&
T X
S
O > X

https://spaces.ac.cn/archives/9305
Thanks to Lilang Lin for introducing this blog
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EXPERIMENTS

Invertible? Inceptiont FID| NFE|]

ooooooooooooooooooooooooooooooooooooooooooo PlXClCNN [36] X 460 65.9 1024
IGEBM [2] X 6.02 40.6 60
~ . ViTGAN [24] X 9.30 6.66 1
» CIFAR-10 Sample quahtY StyleGAN2-ADA [17] X 9.83 2.92 1
. StyleGAN2-ADA (cond.) [17] X 10.14 2.42 1
(F ID , Inceptlon) and NCSN [31] X 8.87 25.32 1001
. NCSNv2 [32] X 8.40 10.87 1161
number of function DDPM [16] X 0.46 3.17 1000
NCSN++ VE-SDE [33 X 9.83 2.38 2000
: NCSN++ deep VE-SDE [33] X 9.89 2.20 2000
evaluation (NF E) ’ Glow [19] / 3.92 48.9 1
DDIM, T=50 [30] / - 4.67 50
DDIM, T=100 [30] / - 4.16 100
NCSN++ VE-ODE [33 / 9.34 520 194
NCSN++ deep VE-ODE [33] / 9.17 7.66 194
DDPM++ backbone
VP-SDE [33 X 9.58 2.55 1000
sub-VP-SDE [33 X 9.56 2.61 1000
VP-ODE [33 / 9.46 2.97 134
sub-VP-ODE [33] / 9.30 3.16 146
PEGM (ours) / 9.65 2.48 104
DDPM++ deep backbone
VP-SDE [33 X 9.68 2.41 1000
sub-VP-SDE [33 X 9.57 2.41 1000
VP-ODE [33 / 9.47 2.86 134
sub-VP-ODE [33] / 9.40 3.05 146
PEGM (ours) / 9.68 2.35 110




EXPERIMENTS

Figure 3: Uncurated samples on datasets of increasing resolution. From left to right: CIFAR-10
32 x 32, CelebA 64 x 64 and LSUN bedroom 256 x 256.
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EXPERIMENTS

» To accelerate the inference speed of ODEs, we can increase the step
size (decrease the NFEs) in numerical solvers

CIFAR-10
200
== PFGM (Euler)
= DDIM
150 20 - VP-ODE (Euler)

100 10 \\ The effects of increasing step
L

size on PFGM, VP-ODE and

50 DDIM using the forward
— Euler method, with a varying
0 NFE ranging from 10 to 100.
0 20 40 60 80 100
NFE

(¢) FID vs. NFE on CIFAR-10



EXPERIMENTS
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» Define the invertible forward mapping:
log Zmax

x(10g Zmax) = M(x(10g 2min)) = x(10€ Zmin) + v(x(t')xv(X(t)) I et dt’

» Likelihood evaluation Table 2: Bits/dim on CIFAR-10

bits/dim |

RealNVP [6] 3.49
Glow [19] 3.35
Residual Flow [3] 3.28
Flow++ [14] 3.29
DDPM (L) [16] <3.70°
DDPM++ backbone

VP-ODE [33] 3.20
sub-VP-ODE [33] 3.02

PFGM (ours) 3.19
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EXPERIMENTS

» Image Interpolations

43

Figure 10: Interpolation on CelebA 64 x 64 by PEFGM
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CONCLUSION

> “Poisson flow” generative model (PFGM)

> Interpret the data points as electrical charges on the z = 0 hyperplane
in a space augmented with an additional dimension z

_ _Forward ODE _
- - @@ -
< Backward ODE
. _Forward ODE _ >

Backward ODE
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