Poisson Flow Generative Models

Yilun Xu*, Ziming Liu*, Max Tegmark, Tommi Jaakkola NeurIPS 2022

> STRUCT Group Seminar Presenter: Wenjing Wang 2022.10.30

OUTLINE

► Authorship

- ► Background
- ► Method
- ► Experiments
- ► Conclusion

Denoising diffusion probabilistic model

- Denoising diffusion probabilistic model
- Noising process:

$$x_i = \sqrt{1 - \beta_i} x_{i-1} + \sqrt{\beta_i} z_{i-1}, \quad z_{i-1} \sim^{iid} \mathcal{N}(0, \mathbf{I})$$

• T-time conditional transition:

$$q(x_t | x_0) = \mathcal{N}(x_t; \sqrt{\bar{\alpha}_t} x_0, (1 - \bar{\alpha}_t)\mathbf{I})$$

where $\alpha_t = 1 - \beta_t$ and $\bar{\alpha}_t = \prod_{s=1}^t \alpha_s$

- Score-based generative model
- DDPM's noising process:

$$x_i = \sqrt{1 - \beta_i} x_{i-1} + \sqrt{\beta_i} z_{i-1}, \quad z_{i-1} \sim^{iid} \mathcal{N}(0, \mathbf{I})$$

• Markov Chian turns to stochastic process if time continues:

$$dX_t = -\frac{1}{2}\beta(t)X_t dt + \sqrt{\beta(t)}dW_t$$

where W is an independent Weiner process

- Score-based generative model
- DDPM's t-time conditional transition:

$$q(x_t | x_0) = \mathcal{N}(x_t; \sqrt{\bar{\alpha}_t} x_0, (1 - \bar{\alpha}_t)\mathbf{I})$$

• Markov Chian turns to stochastic process if time continues: $q_{0_{t}}(x(t) | x(0)) = \mathcal{N}(x(t); x(0)e^{-\frac{1}{2}\int_{0}^{t}\beta(s)ds}, \mathbf{I} - \mathbf{I}e^{-\int_{0}^{t}\beta(s)ds})$ If $\int_{0}^{t}\beta(s)ds \to +\infty, t \to T$ then $q_{0_{t}}(x(t) | x(0)) \to \mathcal{N}(x(t); 0, \mathbf{I})$

- Score-based generative model
- How to reverse above stochastic process?
- Consider a general forward diffusion process,

 $dX_t = f(X_t, t)dt + g(t)dW_t$

• There exits a reverse stochastic process which share the same marginal distribution as the forward one

 $dX_t = [f(X_t, t) - g(t)^2 \nabla_{x_t} \log p_t(X_t)]dt + g(t)d\bar{W}_t$

Score-based generative model

Score-based generative model

OUTLINE

- ► Authorship
- ► Background
- ► Method
- ► Experiments
- ► Conclusion

METHOD

► "Poisson flow" generative model (PFGM)

• Motion in a viscous fluid transforms any planar charge distribution into a uniform angular distribution.

A positive charge with z > 0, move in the direction of their repulsive force, eventually crossing an imaginary hemisphere of radius *r*.

If the the original charge distribution is let loose just above z = 0, it will cause a uniform distribution for $r \to \infty$.

METHOD

► "Poisson flow" generative model (PFGM)

► Poisson equation

$$\Delta arphi = f$$

where Δ is the Laplace operator

f and arphi are real or complex-valued functions on a manifold

- Usually, f is given and arphi is sought

• Euclidean space:
$$abla^2 arphi = f$$

► Poisson equation

Poisson equation Let $\mathbf{x} \in \mathbb{R}^N$ and $\rho(\mathbf{x}) : \mathbb{R}^N \to \mathbb{R}$ be a *source* function. We assume that the source function has a compact support, $\rho \in C^0$ and $N \ge 3$. The Poisson equation is

$$\nabla^2 \varphi(\mathbf{x}) = -\rho(\mathbf{x}), \tag{1}$$

where $\varphi(\mathbf{x}) : \mathbb{R}^N \to \mathbb{R}$ is called the *potential function*, and $\nabla^2 \equiv \sum_{i=1}^N \frac{\partial^2}{\partial x_i^2}$ is the Laplacian operator. It is usually helpful to define the gradient field $\mathbf{E}(\mathbf{x}) = -\nabla \varphi(\mathbf{x})$ and rewrite the Poisson equation as $\nabla \cdot \mathbf{E} = \rho$, known in physics as Gauss's law [11].

► Poisson equation

$$\nabla^2 \varphi(\mathbf{x}) = -\rho(\mathbf{x}), \tag{1}$$

• With zero boundary condition at infinity, Eq. (1) admits a unique simple integral solution

$$\varphi(\mathbf{x}) = \int G(\mathbf{x}, \mathbf{y}) \rho(\mathbf{y}) d\mathbf{y}, \quad G(\mathbf{x}, \mathbf{y}) = \frac{1}{(N-2)S_{N-1}(1)} \frac{1}{\|\mathbf{x} - \mathbf{y}\|^{N-2}}, \quad (2)$$

where $S_{N-1}(1)$ is a geometric constant representing the surface area of the unit (N-1)-sphere³, and $G(\mathbf{x}, \mathbf{y})$ is the extension of Green's function in N-dimensional space (details in Appendix A.3). The negative gradient field of $\varphi(\mathbf{x})$, referred as *Poisson field* of the source ρ , is

$$\mathbf{E}(\mathbf{x}) = -\nabla\varphi(\mathbf{x}) = -\int \nabla_{\mathbf{x}} G(\mathbf{x}, \mathbf{y}) \rho(\mathbf{y}) d\mathbf{y}, \quad \nabla_{\mathbf{x}} G(\mathbf{x}, \mathbf{y}) = -\frac{1}{S_{N-1}(1)} \frac{\mathbf{x} - \mathbf{y}}{\|\mathbf{x} - \mathbf{y}\|^{N}}.$$
 (3)

$$\mathbf{E}(\mathbf{x}) = -\nabla \varphi(\mathbf{x}) = -\int \nabla_{\mathbf{x}} G(\mathbf{x}, \mathbf{y}) \rho(\mathbf{y}) d\mathbf{y},$$
$$\nabla_{\mathbf{x}} G(\mathbf{x}, \mathbf{y}) = -\frac{1}{S_{N-1}(1)} \frac{\mathbf{x} - \mathbf{y}}{\|\mathbf{x} - \mathbf{y}\|^{N}}.$$

• -E(x) points towards sources

It is straightforward to check that when $\rho(\mathbf{x}) \rightarrow \delta(\mathbf{x} - \mathbf{y})$, we get $\varphi(\mathbf{x}) \rightarrow G(\mathbf{x}, \mathbf{y})$ and $\mathbf{E}(\mathbf{x}) \rightarrow -\nabla_{\mathbf{x}} G(\mathbf{x}, \mathbf{y})$. This implies that $G(\mathbf{x}, \mathbf{y})$ and $-\nabla_{\mathbf{x}} G(\mathbf{x}, \mathbf{y})$ can be interpreted as the potential function and the gradient field generated by a unit point source, *e.g.*, a point charge, located at \mathbf{y} . When $\rho(\mathbf{x})$ takes general forms but has bounded support, simple asymptotics exist for $||\mathbf{x}|| \gg ||\mathbf{y}||$. To the lowest order, $\mathbf{E}(\mathbf{x}) = \nabla_{\mathbf{x}} G(\mathbf{x}, \mathbf{y})|_{\mathbf{y}=\mathbf{0}} \sim \mathbf{x}/||\mathbf{x}||^N$ behaves as if it were generated by a unit point source at $\mathbf{y} = 0$. In physics, the power law decay is considered to be long-range (compared to exponential decay) [11].

• Since -E(x) points towards sources, the backward ODE $\frac{dx}{dt} = -E(x)$ will take samples close to the sources.

- Since -E(x) points towards sources, the backward ODE $\frac{dx}{dt} = -E(x)$ will take samples close to the sources.
- But, the backward ODE has the problem of mode collapse
- 2D plane: points towards the center of the disk O

No augmentation (2D)

- Since -E(x) points towards sources, the backward ODE $\frac{dx}{dt} = -E(x)$ will take samples close to the sources.
- But, the backward ODE has the problem of mode collapse
- 2D plane: points towards the center of the disk O
- Add an additional dimension z: particles can hit different points on the disk and faithfully recover the data distribution.

The gravitational field in which the source of gravity is isotropic

https://spaces.ac.cn/archives/9305 Thanks to Lilang Lin for introducing this blog • Solve the Poisson equation in an augmented space

$$\tilde{\mathbf{x}} = (\mathbf{x}, z) \in \mathbb{R}^{N+1}$$

For training data: z = 0

• With *z*, the Poisson field becomes:

$$\forall \tilde{\mathbf{x}} \in \mathbb{R}^{N+1}, \mathbf{E}(\tilde{\mathbf{x}}) = -\nabla \varphi(\tilde{\mathbf{x}}) = \frac{1}{S_N(1)} \int \frac{\tilde{\mathbf{x}} - \tilde{\mathbf{y}}}{\|\tilde{\mathbf{x}} - \tilde{\mathbf{y}}\|^{N+1}} \tilde{p}(\tilde{\mathbf{y}}) d\tilde{\mathbf{y}}$$

• The associated forward/backward ODEs:

$$d\tilde{\mathbf{x}}/dt = \mathbf{E}(\tilde{\mathbf{x}}), d\tilde{\mathbf{x}}/dt = -\mathbf{E}(\tilde{\mathbf{x}})$$

• Solve the Poisson equation in an augmented de

$$\tilde{\mathbf{x}} = (\mathbf{x}, z) \in \mathbb{R}^{N+1}$$

- For training data: z = 0
- With z, the Poisson field I $orall ilde{\mathbf{x}} \in \mathbb{R}^{N+1}, \mathbf{E}(ilde{\mathbf{x}}) = -\mathbf{V}$

Define trajectories of particles between the z = 0hyperplane and an enclosing hemisphere

• The associated forward/backward ODEs:

$$d\tilde{\mathbf{x}}/dt = \mathbf{E}(\tilde{\mathbf{x}}), d\tilde{\mathbf{x}}/dt = -\mathbf{E}(\tilde{\mathbf{x}})$$

• Backward ODE defines a transformation between the uniform distribution on an infinite hemisphere and the data distribution $\tilde{p}(\tilde{x})$ in the z=0 plane

Theorem 1. Suppose particles are sampled from a uniform distribution on the upper (z > 0) half of the sphere of radius r and evolved by the backward ODE $\frac{d\tilde{\mathbf{x}}}{dt} = -\mathbf{E}(\tilde{\mathbf{x}})$ until they reach the z = 0 hyperplane, where the Poisson field $\mathbf{E}(\tilde{\mathbf{x}})$ is generated by the source $\tilde{p}(\tilde{\mathbf{x}})$. In the $r \to \infty$ limit, under some mild conditions detailed in Appendix \mathbf{A} , this process generates a particle distribution $\tilde{p}(\tilde{\mathbf{x}})$, i.e., a distribution $p(\mathbf{x})$ in the z = 0 hyperplane.

• Starting from an infinite hemisphere, one can recover the data distribution \tilde{p} by following the inverse Poisson field $-\mathbf{E}(x)$

• With *z*, the Poisson field becomes:

$$\forall \tilde{\mathbf{x}} \in \mathbb{R}^{N+1}, \mathbf{E}(\tilde{\mathbf{x}}) = -\nabla \varphi(\tilde{\mathbf{x}}) = \frac{1}{S_N(1)} \int \frac{\tilde{\mathbf{x}} - \tilde{\mathbf{y}}}{\|\tilde{\mathbf{x}} - \tilde{\mathbf{y}}\|^{N+1}} \tilde{p}(\tilde{\mathbf{y}}) d\tilde{\mathbf{y}}$$

- Given a set of training data $D = \{x_i\}_{i=1}^n$ i.i.d sample from p(x)
- Define the <u>empirical version</u> of the Poisson field:

$$\hat{\mathbf{E}}(\tilde{\mathbf{x}}) = c(\tilde{\mathbf{x}}) \sum_{i=1}^{n} \frac{\tilde{\mathbf{x}} - \tilde{\mathbf{x}}_{i}}{\|\tilde{\mathbf{x}} - \tilde{\mathbf{x}}_{i}\|^{N+1}}$$
$$c(\tilde{\mathbf{x}}) = \frac{1}{\sum_{i=1}^{n} \frac{1}{\|\tilde{\mathbf{x}} - \tilde{\mathbf{x}}_{i}\|^{N+1}}}$$

• Sample points inside the hemisphere by perturbing the augmented training data

$$\mathbf{y} = \mathbf{x} + \| \epsilon_{\mathbf{x}} \| (1 + \tau)^{m} \mathbf{u}, \quad z = |\epsilon_{z}| (1 + \tau)^{m}$$

where $\epsilon = (\epsilon_{\mathbf{x}}, \epsilon_{z}) \sim \mathcal{N}(0, \sigma^{2} I_{N+1 \times N+1}), \mathbf{u} \sim \mathcal{U}(S_{N}(1)), \quad m \sim \mathcal{U}[0, M]$
M, σ , and τ are hyper-parameters

- With fixed ϵ and u, the added noise increases exponentially with m.
 - → Points farther away from the data support play a less important role in generative modeling

• Further normalize the field to resolve the variations

$$\mathbf{v}(\tilde{\mathbf{x}}) = -\sqrt{N}\hat{\mathbf{E}}(\tilde{\mathbf{x}})/\|\hat{\mathbf{E}}(\tilde{\mathbf{x}})\|_2$$

Trajectories of its forward/backward ODEs are invariant under normalization

- Mini-batch data: $\mathcal{B} = {\mathbf{x}_i}_{i=1}^{|\mathcal{B}|}$
- Uniformly sample *m* in [0, M] for each data
- M is large (around 300) to ensure reaching a large enough hemisphere
- Training Loss:

$$\mathcal{L}(\theta) = \frac{1}{|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} \| f_{\theta}(\tilde{\mathbf{y}}_i) - \mathbf{v}_{\mathcal{B}_L}(\tilde{\mathbf{y}}_i) \|_2^2$$

• Further normalize the field to resolve the variations

$$\mathbf{v}(\tilde{\mathbf{x}}) = -\sqrt{N}\hat{\mathbf{E}}(\tilde{\mathbf{x}})/\|\hat{\mathbf{E}}(\tilde{\mathbf{x}})\|_2$$

Trajectories of its forward/backward ODEs are invariant under normalization

- Mini-batch data: $\mathcal{B} = {\mathbf{x}_i}_{i=1}^{|\mathcal{B}|}$
- Uniformly sample *m* ir
- M is large (around 300
- Training Loss:

Use a larger batch for the estimation of normalized field since the empirical normalized field is biased

$$\mathcal{L}(\theta) = \frac{1}{|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} \| f_{\theta}(\tilde{\mathbf{y}}_i) - \mathbf{v}_{\mathcal{B}_L}(\tilde{\mathbf{y}}_i) \|_2^2$$

Algorithm 1 Learning the normalized Poisson Field

Input: Training iteration *T*, Initial model f_{θ} , dataset \mathcal{D} , constant γ , learning rate η . **for** $t = 1 \dots T$ **do** Sample a large batch \mathcal{B}_L from \mathcal{D} and subsample a batch of datapoints $\mathcal{B} = \{\mathbf{x}_i\}_{i=1}^{|\mathcal{B}|}$ from \mathcal{B}_L Simulate the ODE: $\{\tilde{\mathbf{y}}_i = \text{perturb}(\mathbf{x}_i)\}_{i=1}^{|\mathcal{B}|}$ Calculate the normalized field by \mathcal{B}_L : $\mathbf{v}_{\mathcal{B}_L}(\tilde{\mathbf{y}}_i) = -\sqrt{N} \hat{\mathbf{E}}_{\mathcal{B}_L}(\tilde{\mathbf{y}}_i)/(\|\hat{\mathbf{E}}_{\mathcal{B}_L}(\tilde{\mathbf{y}}_i)\|_2 + \gamma), \forall i$ Calculate the loss: $\mathcal{L}(\theta) = \frac{1}{|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} \|f_{\theta}(\tilde{\mathbf{y}}_i) - \mathbf{v}_{\mathcal{B}_L}(\tilde{\mathbf{y}}_i)\|_2^2$ Update the model parameter: $\theta = \theta - \eta \nabla \mathcal{L}(\theta)$ **end for return** f_{θ}

Algorithm 2 perturb(x)

Sample the power $m \sim \mathcal{U}[0, M]$ Sample the initial noise $(\epsilon_{\mathbf{x}}, \epsilon_z) \sim \mathcal{N}(0, \sigma^2 I_{(N+1)\times(N+1)})$ Uniformly sample the vector from the unit ball $\mathbf{u} \sim \mathcal{U}(S_N(1))$ Construct training point $\mathbf{y} = \mathbf{x} + \| \epsilon_{\mathbf{x}} \| (1 + \tau)^m \mathbf{u}, z = |\epsilon_z|(1 + \tau)^m$ **return** $\tilde{\mathbf{y}} = (\mathbf{y}, z)$

- ► An equivalent backward ODE that allows for exponentially decay on z
- Sample from the data distribution by the backward ODE

 $d\tilde{\mathbf{x}} = -\mathbf{v}(\tilde{\mathbf{x}})dt$

• The boundary condition of the above ODE is unclear: The starting and terminal time t are both unknown

• An equivalent backward ODE

$$d(\mathbf{x}, z) = -\left(\frac{d\mathbf{x}}{dt}\frac{dt}{dz}dz, dz\right) = -(\mathbf{v}(\tilde{\mathbf{x}})_{\mathbf{x}}\mathbf{v}(\tilde{\mathbf{x}})_{z}^{-1}, 1)dz$$

 $\mathbf{v}(\tilde{\mathbf{x}})_{\mathbf{x}}, \mathbf{v}(\tilde{\mathbf{x}})_z$ are the corresponding components of \mathbf{x}, z in vector $\mathbf{v}(\tilde{\mathbf{x}})$

- When z = 0, we arrive at the data distribution
- We can freely choose a large z_{max} as the starting point

- The distribution on the $z = z_{max}$ hyperplane is no longer uniform
- We derive the prior distribution by radially projecting uniform distribution on the hemisphere with radius $r = z_{max}$ to the $z = z_{max}$ hyperplane:

$$p_{\text{prior}}(\mathbf{x}) = \frac{2z_{\text{max}}^{N+1}}{S_N(z_{\text{max}})(\|\mathbf{x}\|_2^2 + z_{\text{max}}^2)^{\frac{N+1}{2}}} = \frac{2z_{\text{max}}}{S_N(1)(\|\mathbf{x}\|_2^2 + z_{\text{max}}^2)^{\frac{N+1}{2}}}$$

where $S_N(r)$ is the surface area of N-sphere with radius r.

Projection of the sphere onto the t=T plane

When B and D are very close

<i>BC</i>	<i>OB</i> _	$\sqrt{\ \boldsymbol{x}\ ^2 + T^2}$
BD –	OA –	T

https://spaces.ac.cn/archives/9305 Thanks to Lilang Lin for introducing this blog

OUTLINE

- ► Authorship
- ► Background
- ► Method
- ► Experiments
- ► Conclusion

.

 CIFAR-10 sample quality (FID, Inception) and number of function evaluation (NFE).

	Invertible?	Inception ↑	FID ↓	NFE↓
PixelCNN [36]	×	4.60	65.9	1024
IGEBM [8]	×	6.02	40.6	60
ViTGAN [24]	×	9.30	6.66	1
StyleGAN2-ADA [17]	×	9.83	2.92	1
StyleGAN2-ADA (cond.) [17]	×	10.14	2.42	1
NCSN [31]	×	8.87	25.32	1001
NCSNv2 [32]	×	8.40	10.87	1161
DDPM [16]	×	9.46	3.17	1000
NCSN++ VE-SDE [33]	×	9.83	2.38	2000
NCSN++ deep VE-SDE [33]	×	9.89	2.20	2000
Glow [19]	 Image: A second s	3.92	48.9	1
DDIM, T=50 [30]	 Image: A set of the set of the	-	4.67	50
DDIM, T=100 [30]	 Image: A second s	-	4.16	100
NCSN++ VE-ODE [33]	 Image: A second s	9.34	5.29	194
NCSN++ deep VE-ODE [33]	✓	9.17	7.66	194
DDPM++ backbone				
VP-SDE [33]	×	9.58	2.55	1000
sub-VP-SDE [33]	×	9.56	2.61	1000
VP-ODE [33]	· · · · · · · · · · · · · · · · · · ·	9.46	2.97	134
sub-VP-ODE [33]	 Image: A second s	9.30	3.16	146
PFGM (ours)	✓	9.65	2.48	104
DDPM++ deep backbone				
VP-SDE [33]	×	9.68	2.41	1000
sub-VP-SDE [33]	×	9.57	2.41	1000
VP-ODE [33]	· · · · · · · · · · · · · · · · · · ·	9.47	2.86	134
sub-VP-ODE [33]	1	9.40	3.05	146
PFGM (ours)	✓	9.68	2.35	110

. . . .

Figure 3: Uncurated samples on datasets of increasing resolution. From left to right: CIFAR-10 32×32 , CelebA 64×64 and LSUN bedroom 256×256 .

To accelerate the inference speed of ODEs, we can increase the step size (decrease the NFEs) in numerical solvers

The effects of increasing step size on PFGM, VP-ODE and DDIM using the forward Euler method, with a varying NFE ranging from 10 to 100.

(c) FID vs. NFE on CIFAR-10

► Define the invertible forward mapping:

$$\mathbf{x}(\log z_{\max}) = \mathcal{M}(\mathbf{x}(\log z_{\min})) \equiv \mathbf{x}(\log z_{\min}) + \int_{\log z_{\min}}^{\log z_{\max}} \mathbf{v}(\mathbf{x}(t'))_{\mathbf{x}} \mathbf{v}(\tilde{\mathbf{x}}(t'))_{z}^{-1} e^{t'} dt'$$

► Likelihood evaluation Table 2: Bits/dim on CIFAR-10

	bits/dim ↓	
RealNVP [6]	3.49	
Glow [19]	3.35	
Residual Flow [3]	3.28	
Flow++ [14]	3.29	
DDPM (<i>L</i>) [16]	$\leq 3.70^*$	
DDPM++ backbone		
VP-ODE [33]	3.20	
sub-VP-ODE [33]	3.02	
PFGM (ours)	3.19	

► Image Interpolations

Figure 10: Interpolation on CelebA 64×64 by PFGM

OUTLINE

- ► Authorship
- ► Background
- ► Method
- ► Experiments
- ► Conclusion

. .

- ► "Poisson flow" generative model (PFGM)
- Interpret the data points as electrical charges on the z = 0 hyperplane in a space augmented with an additional dimension z

