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➤ Denoising diffusion probabilistic model
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BACKGROUND

Denoising Diffusion Probabilistic Model (NIPS-20)



➤ Denoising diffusion probabilistic model 

• Noising process:    

 

• T-time conditional transition: 

 

where    and  

xi = 1 − βixi−1 + βizi−1, zi−1 ∼iid #(0,I)

q(xt |x0) = #(xt; ᾱt x0, (1 − ᾱt)I)

αt = 1 − βt ᾱt =
t

∏
s= 1

αs
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Denoising Diffusion Probabilistic Model (NIPS-20)



➤ Score-based generative model 

• DDPM’s noising process:    

 

• Markov Chian turns to stochastic process if time continues: 

 

where  is an independent Weiner process

xi = 1 − βixi−1 + βizi−1, zi−1 ∼iid #(0,I)

dXt = − 1
2 β(t)Xtdt + β(t)dWt

W
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➤ Score-based generative model 

• DDPM’s t-time conditional transition: 

 

• Markov Chian turns to stochastic process if time continues: 

 

If  ,   then  

q(xt |x0) = #(xt; ᾱt x0, (1 − ᾱt)I)

q0t
(x(t) |x(0)) = #(x(t); x(0)e− 1

2 ∫t
0 β(s)ds, I − Ie− ∫t

0 β(s)ds)

∫
t

0
β(s)ds → + ∞ t → T q0t

(x(t) |x(0)) → #(x(t); 0, I)
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➤ Score-based generative model 

• How to reverse above stochastic process? 

• Consider a general forward diffusion process, 

 

• There exits a reverse stochastic process which share the same marginal 
distribution as the forward one 

 

dXt = f(Xt, t)dt + g (t)dWt

dXt = [ f(Xt, t) − g (t)2 ∇xt
log pt(Xt)]dt + g (t)dW̄t
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➤ Score-based generative model 
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METHOD

➤ “Poisson flow” generative model (PFGM) 

• Motion in a viscous fluid transforms any planar charge distribution into 
a uniform angular distribution.

A positive charge with z > 0, move 
in the direction of their repulsive 
force, eventually crossing an 
imaginary hemisphere of radius r. 

If the the original charge 
distribution is let loose just above 
z = 0, it will cause a uniform 
distribution for r → .∞
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METHOD

➤ “Poisson flow” generative model (PFGM)

N-dim (N+1)-dim
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METHOD - BACKGROUND

➤ Poisson equation 

where      is the Laplace operator 

    and      are real or complex-valued functions on a manifold 

• Usually,      is given and       is sought 

• Euclidean space: 
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METHOD - BACKGROUND

➤ Poisson equation 

•
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METHOD - BACKGROUND

➤ Poisson equation 

• With zero boundary condition at infinity,  Eq. (1) admits a unique 
simple integral solution
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METHOD - BACKGROUND

• −E(x) points towards sources
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METHOD - HOW TO DRAW SAMPLES

• Since  points towards sources, the backward ODE   

will take samples close to the sources.

−E(x) dx
dt

= − E(x)
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METHOD - HOW TO DRAW SAMPLES

• Since  points towards sources, the backward ODE   

will take samples close to the sources. 

• But, the backward ODE has the problem of mode collapse

−E(x) dx
dt

= − E(x)

• 2D plane: points towards 
the center of the disk O
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METHOD - HOW TO DRAW SAMPLES

• Since  points towards sources, the backward ODE   

will take samples close to the sources. 

• But, the backward ODE has the problem of mode collapse

−E(x) dx
dt

= − E(x)

• 2D plane: points towards 
the center of the disk O 

• Add an additional 
dimension z:  particles can 
hit different points on the 
disk and faithfully recover 
the data distribution.
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METHOD - HOW TO DRAW SAMPLES

https://spaces.ac.cn/archives/9305 
Thanks to Lilang Lin for introducing this blog

The gravitational field in which the 
source of gravity is isotropic

https://spaces.ac.cn/archives/9305
https://spaces.ac.cn/archives/9305
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METHOD - HOW TO DRAW SAMPLES

• Solve the Poisson equation in an augmented space 

For training data: z = 0 

• With z, the Poisson field becomes: 

• The associated forward/backward ODEs:



27

METHOD - HOW TO DRAW SAMPLES

• Solve the Poisson equation in an augmented space 

• For training data: z = 0 

• With z, the Poisson field becomes: 

• The associated forward/backward ODEs:

Define trajectories of  particles between the z = 0 
hyperplane and an enclosing hemisphere
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METHOD - HOW TO DRAW SAMPLES

• Backward ODE defines a transformation between the uniform 
distribution on an infinite hemisphere and the data distribution  in 
the z=0 plane 

• Starting from an infinite hemisphere, one can recover the data 
distribution    by following the inverse Poisson field 

p̃(x̃)

p̃ −E(x)
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METHOD - LEARNING

• With z, the Poisson field becomes: 

• Given a set of training data     i.i.d sample from  

• Define the empirical version of the Poisson field:

D = {xi}n
i= 1 p(x)



30

METHOD - LEARNING

• Sample points inside the hemisphere by perturbing the augmented 
training data 

where                                                                              , 

M, σ, and τ are hyper-parameters 

• With fixed  and u, the added noise increases exponentially with m. 

→ Points farther away from the data support play a less important role 
in generative modeling

ϵ
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METHOD - LEARNING

• Further normalize the field to resolve the variations 

Trajectories of its forward/backward ODEs are invariant under 
normalization 

• Mini-batch data: 

• Uniformly sample m in [0, M] for each data 

• M is large (around 300) to ensure reaching a large enough hemisphere 

• Training Loss: 
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METHOD - LEARNING

• Further normalize the field to resolve the variations 

Trajectories of its forward/backward ODEs are invariant under 
normalization 

• Mini-batch data: 

• Uniformly sample m in [0, M] for each data 

• M is large (around 300) to ensure reaching a large enough hemisphere 

• Training Loss: 

Use a larger batch for the estimation of  normalized  
field since the empirical normalized field is biased
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METHOD - LEARNING
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METHOD - EQUIVALENT BACKWARD ODE

➤ An equivalent backward ODE that allows for exponentially decay on z 

• Sample from the data distribution by the backward ODE 

• The boundary condition of the above ODE is unclear: 

The starting and terminal time t are both unknown 
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METHOD - EQUIVALENT BACKWARD ODE

• An equivalent backward ODE 

• When z = 0, we arrive at the data distribution 

• We can freely choose a large    as the starting point zmax
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METHOD - EQUIVALENT BACKWARD ODE

• The distribution on the  hyperplane is no longer uniform 

• We derive the prior distribution by radially projecting uniform 
distribution on the hemisphere with radius  to the 
hyperplane: 

z = zmax

r = zmax z = zmax
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METHOD - EQUIVALENT BACKWARD ODE

https://spaces.ac.cn/archives/9305 
Thanks to Lilang Lin for introducing this blog

Projection of the sphere onto the 
t=T plane

When B and D are very close

https://spaces.ac.cn/archives/9305
https://spaces.ac.cn/archives/9305
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EXPERIMENTS

➤ CIFAR-10 sample quality 
(FID, Inception) and 
number of function 
evaluation (NFE).
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EXPERIMENTS
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EXPERIMENTS

➤ To accelerate the inference speed of ODEs, we can increase the step 
size (decrease the NFEs) in numerical solvers

The effects of increasing step 
size on PFGM, VP-ODE and 
DDIM using the forward 
Euler method, with a varying 
NFE ranging from 10 to 100.
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EXPERIMENTS

➤ Define the invertible forward mapping: 

➤ Likelihood evaluation
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EXPERIMENTS

➤ Image Interpolations
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CONCLUSION

➤ “Poisson flow” generative model (PFGM) 

➤ Interpret the data points as electrical charges on the z = 0 hyperplane 
in a space augmented with an additional dimension z


