NeRF in the Dark: High Dynamic Range View Synthesis from Noisy Raw Images

CVPR 2022 (Oral)

Ben Mildenhall, Peter Hedman, Ricardo Martin-Brualla, Pratul P. Srinivasan, Jonathan T. Barron

First unit: Google Research

2022/10/16

Website: https://bmild.github.io/rawnerf/

Authorship

Background

Method

Experiment

Background-Image Processing

Background-Image Processing

Demosaicing algorithm

Design different interpolation formulas for different patterns

Background-Image Processing

The noise in raw image

Source of the noise

- "shot" noise: photon arrivals are a Poisson process
- "read" noise: noise in the readout circuitry

Model of the noise

$$z(x) = y(x) + \sigma(y(x)) \xi(x)$$

the distribution of the error is **zero-mean**.

Authorship

Background

Method

Experiment

RawReRF Pipeline

The problem of L2 loss for training raw image

(a) Noisy raw test image (b) Trained w/ L2 loss (c) Trained w/ proposed loss Muddy dark regions. Why?

A simple way:

passing both the **rendered estimate** \hat{y} and **noisy observed intensity** ythrough a **tonemapping curve** ψ before the loss is applied

$$L_{\psi}(\hat{y}, y) = \sum_{i} (\psi(\hat{y}_i) - \psi(y_i))^2$$

The **nonlinear** tonemap will introduce **bias** that change the noisy signal's distribution. Noise is not zero-mean.

A better way:

To converge to an unbiased result

Using a locally valid linear approximation for the error term

$$\psi(\hat{y}_i) - \psi(y_i) \approx \psi(\hat{y}_i) - (\psi(\hat{y}_i) + \psi'(\hat{y}_i)(y_i - \hat{y}_i)) = \psi'(\hat{y}_i)(\hat{y}_i - y_i).$$

Note that author choose to linearize around \hat{y} because, unlike the noisy observation y, \hat{y} tends towards the true signal value $x_i = E[y_i]$ over the course of training.

The weighted L2 loss:
$$\tilde{L}_{\psi}(\hat{y}, y) = \sum_{i} \left[\psi'(\operatorname{sg}(\hat{y}_{i})) (\hat{y}_{i} - y_{i}) \right]^{2}$$

weight

that treats its argument as an constant with zero derivative

- Authorship
- Background
- Method

Experiment

Failure modes of NeRF on a daytime indoor scene

ablation study

on synthetic scene

	Simulated shutter speed (seconds)							
Method	∞	1/7	1/15	1/30	1/60	1/120	1/240	
Noisy input	-	23.33	19.65	16.03	12.51	9.40	7.18	
LDR NeRF	33.16	31.25	29.14	26.10	22.31	18.27	14.87	
RawNeRF	32.15	32.11	31.94	31.59	30.94	29.69	27.73	

	Num.	Raw	Affine-aligned sRGB				
Method	inputs	PSNR↑	PSNR↑	SSIM↑	LPIPS↓		
Noisy input	-	54.38	10.24	0.035	0.733		
SID [9]	1	-	21.62	0.525	0.547		
Unprocess [5]	1	70.80	23.02	0.491	0.489		
RViDeNet [53]	3	68.29	22.20	0.516	0.545		
UDVD [46]	5	70.68	22.75	0.514	0.507		
LDR NeRF [3]	N-1	-	19.43	0.518	0.544		
Un+RawNeRF	N-1	67.99	23.35	0.531	0.507		
RawNeRF	N-1	67.20	23.53	0.536	0.501		

Every deep denoiser uses pretrained model weights

Experiment-application

Synthetic defocus, modifying exposure and tonemapping

Video website: https://bmild.github.io/rawnerf/img/candle_focus_crop.mp4

- Authorship
- Background
- Method

Experiment

Contribution:

• Proposing a method for training RawNeRF directly on raw images that can handle high dynamic range scenes as well as noisy inputs captured in the dark.

Future work:

- Jointly optimize RawNeRF and calculate the input camera poses
- Training on raw images with variable exposure

Thanks for watching.

徐一伦

yilunxu_buaa@163.com